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1 Introduction

“The year is 1839. It is a time of dizzying developments in chemistry. Chemists
are just starting to synthesize innumerable new molecules. They try a little bit of
everything, they react everything with everything else. One among them, Charles
Goodyear, promped by sheer curiosity, takes the sap from the hevea tree - a sort
of whitish, milky juice - and decides to boil it with sulfur. He has no idea what
latex is. He only knows that it contains carbon and hydrogen. The very concept
of a long-chained molecule is totally unknown to him or any other chemist. But
he continues to experiment and obtains a sort of blackish substance, deformable
and yet resilient: natural rubber. This rubber remains, more than a century and a
half later, one of the pillars of man’s industrial activity. Yet, in Goodyear’s time
no chemist had any interest in this type of product. Why? When a nineteenth-
century chemist tried to synthesize a new material, he attempted to react two
known compounds on each other. He expected to obtain a molecule containing
at most a few tens of atoms, about the same number as the starting materials.
He was not prepared to find a compound whose every molecule contains a mil-
lion atoms! Besides, he lacked the tools to determine whether he had made one
product or a mixture of several. The standard practice then was to purify the
product of the reaction by crystallization or sequential distillation until one ob-
tained a pure substance. The main criterion for purity was the melting point.
If the compound obtained is pure, it has a well-defined melting point. If it is a
mixture, the melting process starts and ends over a range of temperatures.
As it happens, long-chained molecules have no well-defined melting point. They
do not crystallize unambiguously and, when heated up, they behave somewhat
like amorphous glass. The solid starts softening before liquefying, and the tran-
sition from solid to liquid takes place over a rather extended temperature range.
Given the purity criteria of nineteenth-centure chemistry, these molecules were
doomed, and the chemists of the time had no reason to show any interest in
them.” [28]
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1. INTRODUCTION

1.1 A (very) brief history of polymers

The above story was brought by Pierre-Gilles de Gennes on his journey through the high
schools of France after receiving his Nobel prize in physics. The purpose of the story was
to warn against too much reliance on laws, doctrines, and rules. In this particular case of
polymer research, it was not until 80 years after Goodyears discovery that the concept of long-
chained molecules was accepted by the community of chemists and physicists. It happened
thanks to Hermann Staudinger, who succeeded around 1920 to synthesize relatively long
molecules (some 20 units, rather than 1000 or a million units). Chains of this length are still
short enough to be crystallized and to have a well-defined melting point. From that point on,
gradually, by means of successive operations, Staudinger prepared ever longer chains. These
chains remained well-defined, even though their melting point becomes increasingly fuzzy.
From all this, he concluded that it is possible to make very long molecules. Yet Staudinger
was also a bit a victim of the doctrines of his time, as he assumed that these macromolecules
looked like small rigid rods, up to about a micrometer in length.

It was another 20 years before the atomic physicist and physical chemist Richard Kuhn
was able to show, using the concept of entropy in statistical mechanics, that the amazing
elasticity of rubber can be explained by the very flexibility of the macromolecules. [70]

1.2 Flexibility and uncrossability

Richard Kuhns description of a polymer as a coiling, flexible thread is valid because in each
monomer (the building block of a polymer) there is at least one torsion angle that can adopt
multiple values, all within reach of thermally activated motions. For example, the torsion
angle in the C-C backbone of polyethylene has three possible values (one trans and two
gauche). [44] This means that the number of possible conformations of a polymer is as-
tronomical, in the order of 3(n−3) for a polyethylene chain containing n CH2 groups. This
number is somewhat overestimated, because repulsive interactions between the atoms pre-
vent overlap between different parts of a chain. For a polymer in vacuo, or a dilute solution
of polymers in a good solvent, this leads to somewhat swollen conformations. In a polymer
melt, i.e. a liquid of undiluted polymer, these so-called excluded volume effects are effec-
tively screened, [13] and the random coil conformation is retained.

As a result of the flexibility of polymer chains, their dynamic behavior is quite compli-
cated. In polymer melts, and also in concentrated polymer solutions, the situation is aggra-
vated by the fact that each chain is interacting with many other chains. The effect of these
intermolecular interactions is best revealed by the peculiar flow behavior of these materi-
als: they are very viscous and have surprising elastic properties. In uncrosslinked polymers,
these elastic properties manifest themselves temporarily, but still sometimes on very long
time scales (hours). So, despite the fact that they are not crosslinked (as in a rubber), dense
polymer systems act temporarily as rubber-like networks. The cause of this, of course, is
the fact that the chains are intertwined and can not penetrate through each other: they are
“entangled”. These entanglements survive for some non-negligible time. Another interesting
observation is that the magnitude of the elastic effect is rather independent of chain length,
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1. INTRODUCTION

but it occurs only when the chains are longer than a certain threshold. The aim of the research
presented in this thesis is to explain this peculiar dynamic behavior of polymer melts, and to
derive the threshold chain length from the characteristics of a specific polymer species.

1.3 Theories of entanglement

Many attempts have already been made to explain the entanglement phenomenon. The usual
procedure is to propose a microscopic model, calculate the consequences for various dynamic
properties, and compare the outcome with experiment (if available). Theoretical treatments
of this sort can be divided in two groups. [73] First, there are the cooperative motion models,
where the focus is on the increased friction experienced by a test chain because it drags other
chains or chain segments along with it over finite distances. The resulting motion of a test
chain is isotropic over all length scales, and the friction enhancement is in general a function
of both test chain and surrounding chain molecular weight. A major difficulty in such an
approach is the specification of the location and duration of entanglements, because the exact
nature of an entanglement is not known. Examples are the mode-coupling approach by Ngai
and co-workers [88–90] and the phenomenological theory of Skolnick and co-workers. [127]
But also the generalized Langevin equation models fall into this category. These models
often do try to address the inherent multiple-chain nature of an entanglement, or at least
the viscoelastic nature of the effective field felt by a test chain. Examples are the Ronca
model [117], the Renormalized Rouse (mode-coupling) formalism by Schweizer [122, 123],
and more recently the Twice-Renormalized Rouse formalism by Fatkullin. [36]

The second group includes the reptative motion models, in which the primary result of
entanglement is the constraining of a test chain to longitudinal, i.e., anisotropic motion along
its own contour. The test chain is often envisioned as being confined to a fictitious “tube”
with diameter equal to the entanglement spacing. The reptation model was introduced by De
Gennes [24, 25] and further refined by Doi and Edwards [30]. The main task of the tube is
to constrain the chain along the lateral direction. It has been shown that other models exist
which use this same ingredient, but without explicitly introducing a tube. [56, 60] The main
point of concern with these theories is that although the test chain is treated explicitly, only
some mean field approximation is applied to represent the surrounding chains. This makes the
calculation of certain quantities which to a large extent depend on intermolecular correlation
functions somewhat questionable. To name one example, it appears that viscoelasticity is
largely based on collective multi-chain modes. Therefore calculation of the stress tensor
should include intermolecular interactions. [35, 37, 43, 46]

At the time of writing (2002) it remains a matter of debate which theory provides the best
description of polymer melt dynamics. Some experiments seem to agree with the reptation
model, [120] while others disagree. [34,36] In this thesis we will use an alternative technique
to study the dynamics of polymer melts: computer simulations.

5



1. INTRODUCTION

1.4 Simulations

By the use of computers, a range of increasingly complex polymer models can be solved. It
will be instructive to shortly review the different approaches that have already been under-
taken.

1.4.1 Microscopic simulations

On the very detailed level, molecular dynamics (MD) simulations can be performed, in which
each atom of the polymer chain is represented separately (see Fig. 1.1a). The atoms are mo-
delled as interacting particles and they are moving according to Newton’s laws. Bulk behavior
is simulated by applying periodic boundary conditions to the simulation box. Typical MD
simulations cover the motion of a few thousand of atoms over a period of a few nanoseconds;
on current computers such a run would take a day or two to complete. There are limitations,
however, to the length of polymers that can be simulated this way, for two reasons: First,
the typical size of the polymer grows as

√
n, where n is the number of monomers in a chain.

If a polymer is not allowed to interact with itself via the periodic boundaries, the volume of
the box must increase as n3/2. Second, the longest relaxation time of a polymer chain scales
very fast, approximately as n3. To obtain a well-equilibrated system, and also to measure
certain long-time correlation functions, the simulation must be performed for at least as long
as this time scale.1 It should come as no surprise that, up to now, atomistically detailed MD
simulations have only been performed for relatively short chains, with lengths of the order of
100 monomers.

1.4.2 Coarse-grained simulations

In order to increase the time and length scales accessible in the simulations of polymers,
detailed atomistic models are often replaced by coarse-grained models. The coarse-graining
of polymers, and subsequent analysis of the dynamic data, can be performed in two ways:
bottom-up or top-down. In the bottom-up approach, the interactions between the coarse-
grained sites (called blobs in this thesis) are derived from the underlying atomistic interac-
tions by suitable averaging techniques. [2, 7, 45, 86, 137] This results in an effective potential
as well as friction and random forces. When the degree of coarse-graining is sufficiently
large, the effective potential usually becomes very soft. This allows the bonds between the
blobs to cross each other (see Fig. 1.1b) and greatly accellerates the equilibration process in
polymer systems. On the other hand, the resulting dynamics is very unrealistic (too fast),
because in reality bonds cannot cross each other. Therefore, when primary interest lies with
the dynamics of the polymer system, the atomistic details must somehow be re-introduced
in the blobs (this is called “reverse-mapping”) and the simulations must be continued in the
ordinary MD fashion.

In the other (top-down) approach a certain interaction model is chosen beforehand. In
such a “generic” polymer model, the interactions are chosen such that bond crossings will

1 The equilibration time can be reduced considerably by use of special sampling techniques, such as End-Bridging
Monte Carlo. [77]

6



1. INTRODUCTION

Figure 1.1: Different polymer simulation models. a) Atomistically detailed model. b) Coarse
model, obtained by coarse-graining the atomistically detailed model (bottom-up approach).
When many atoms are combined into one new particle, the effective interactions between the
particles become so soft that bond crossings can no longer be prevented. c) Lattice model.
Advantage is the great speed with which a computer can simulate such a model and the
relative easy with which bond crossings can be prevented. d) Coarse model, in which the
interaction model has been chosen beforehand (generic polymer model; top-down approach).
Usually these interactions are chosen such that bond crossings are energetically unfavorable
(in this example a string of hard spheres). The actual values for the model parameters may be
estimated a posteriori by mapping on experimental data.

7
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be forbidden or at least energetically unfavorable. In contrast to the bottom-up approach, the
model parameters are usually not derived from an underlying atomistic model. Examples of
this kind are the Monte Carlo simulations of polymers on a diamond lattice by Termonia [135]
and Kremer [64], Monte Carlo simulations on a square lattice by Shaffer [125, 126] (see Fig.
1.1c), and the hard chain simulations of Smith et al. [130, 131] and Gao and Weiner [47, 48]
(see Fig. 1.1d). An exception may be the work on the (Monte Carlo) bond fluctuation model,
in which attempts have been made to map real polymer systems onto the abstract model.
[11, 63, 136]

In most top-down models, there exists a possibility to estimate the time and length scales
occurring in the simulation a posteriori. A well-studied example is the polymer model of
Kremer, Grest and co-workers, [66, 107] in which the polymer segments are modeled as rel-
atively hard (Lennard-Jones) beads, connected by finite extensible non-linear springs. The
simulations are performed in reduced units, i.e., lengths, masses, and energies are related to
the size σ , mass m, and interaction energy ε of the Lennard-Jones beads. The universal trends
shown by these simulations are consistent with a crossover to reptation at large chain lengths,
although it is clear that the crossover is broad. The crucial test, of course, comes when sim-
ulation results are compared with experimental results. In order to make such a comparison,
numerical values for the model parameters are needed. Kremer and Grest suggested mapping
the simulated persistence and entanglement lengths on those of real polymers. [66] The cru-
cial issue here is to estimate the entanglement length, which is not a trivial thing to do, as will
become clear in Chapter 5 of this thesis.

1.4.3 Simulations performed in this work

The polymer simulation model presented in this thesis distinguishes itself from the above
simulation models because it combines two approaches. (i) The model will be based on an
undulging atomistic model (bottom-up), therefore encompassing time and length scales in
a much more realistic way than can be achieved in the top-down approach. (ii) A method
is introduced to detect and prevent bond crossings, which ensures realistic dynamics of the
polymer chains. As already mentioned, in most other bottom-up approaches, the dynamics
of the coarse-grained model is unrealistic because bond crossings are possible.

Notice that in all top-down models the uncrossability is explicitly introduced, for example
by confining the chain on a lattice and exclude multiple occupation of one lattice site or by
means of the bond fluctuation model. [67,125] Lattice models have their limitations by being
typically confined to rather low densities and by tending to overestimate the diffusivity at
intermediate time scales.

1.5 A short outline of this thesis

This thesis reports on atomistic and coarse-grained simulations of polyethylene melts. We
will compare the results with both experimental and theoretical predictions. Two of the best
known theories of the dynamics of polymer melts are the Rouse model (for unentangled poly-
mer melts) and the aforementioned tube model (for entangled polymer melts). We discuss

8



1. INTRODUCTION

these theories in some detail in Chapter 2.
In Chapter 3 we present atomistic molecular dynamics simulations of a melt of C120H242

chains. Such chains are not yet long enough to be seriously entangled, so the dynamic results
can be compared with Rouse model predictions. On the other hand, we expect that these
chains are long enough to have polymer-like configurations and interactions. This is neces-
sary to be able to correctly derive the coarse-grained interaction parameters for simulation of
longer polymers.

The method with which the coarse-grained interactions are derived from the atomistic
simulations is described in Chapter 4. In this chapter, we also explain the implementation
of the uncrossability constraint, and apply it to the coarse-grained version of the C120H242
melt. We will show the importance of the uncrossability of bonds, even for chains which
are unentangled. Only when the bonds can not cross each other do the results of the coarse-
grained simulations agree with the results of the atomistic molecular dynamics simulations.

In Chapter 5 the coarse-grained model is studied for a range of chain lengths, from C80 to
C1000. We will study various dynamical quantities, such as the diffusivity, dynamic structure
factor, shear relaxation modulus and the viscosity, and compare the outcome with experiment
and various theories.

In Chapter 6 we will show that different experimental techniques, which measure differ-
ent kinds of dynamical quantities, can consistently lead to the same value for the entangle-
ment molecular weight. For this, however, it is necessary to release the strict relationship
between the entanglement molecular weight and the value of the plateau modulus.

The nonlinear flow properties of the coarse-grained model are investigated in Chapter 7
by means of nonequilibrium simulations. Both transient (start-up) effects and the stationary
state will be discussed. Moreover, we will give some attention to the validity of certain
rheological “rules”, such as the stress-optical rule and the Cox-Merz rule.

At the end of this thesis, the results are summarized in both English and Dutch. We will
focus on the advantages and disadvantages of the current polymer model and we will suggest
improvements of the coarse-graining procedure.
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2 Theory

In this chapter, we will describe in some detail the two predominant theories
for the dynamics of chains in polymer melts: the Rouse model and the tube
model. The former is supposed to describe the dynamics of relatively low-weight
linear polymers. The latter describes the dynamics of very long chains which are
forced to move anisotropically inside effective tubes formed by entanglements
with surrounding chains. These theories will be tested against simulation results
in the subsequent chapters.

2.1 Introduction

Much of the static and dynamic behavior of monodisperse, linear polymer melts can be ex-
plained by models which are surprisingly simple. [30] This is possible because the global,
large scale properties of polymers do not depend on the chemical details of the monomers,
except for some species-dependent “effective” parameters. For example, one can measure the
end-to-end vector, defined as

Re = rn − r1, (2.1)

where r1 and rn are the positions of the first and last monomers respectively. If the end-to-end
vector is measured for a large number of polymers in a melt, one will find that the distribution
of end-to-end vectors is Gaussian and that the root mean squared end-to-end distance scales
with the square root of the number of monomers,

√〈R2
e〉 ∝

√
n, irrespective of the chemical

details. This scaling is characteristic for a random walk: after taking n consecutive steps,
each in a random direction, the end point will on average be separated only

√
n steps from

the starting point. Of course, in a real polymer the vectors connecting consecutive monomers
do not take up random orientations. However, if enough (say λ ) consecutive monomers are
combined into one segment with position Ri, the vectors connecting the segments (Ri−Ri−1,
Ri+1 −Ri, etc.) become independent of each other, see Fig. 2.1. If the number of segments
N = n/λ is large enough, the end-to-end vectors, according to the central limit theorem in
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Figure 2.1: If enough consecutive
monomers are combined into one segment,
the vectors connecting these segments
become independent of each other. In this
example a polyethylene chain is represented
by segments of λ = 30 monomers. The
vectors connecting the centers of mass
of these segments are depicted as black
arrows.

statistics, will be Gaussianly distributed. Furthermore, on the global scale of segments the
mean square end-to-end distance will be given by〈

R2
e

〉
= Nb2, (2.2)

i.e. the local structure of the polymer appears only through the effective (or statistical) bond
length b. Therefore, if one is interested in the global static properties of polymers, one can
start from the simplest model available, consistent with a Gaussian end-to-end distribution.
This model is one in which every bond vector itself is Gaussianly distributed. Such a “Gaus-
sian chain” is often represented by a mechanical model of segments connected by ideal,
harmonic springs with a spring constant k equal to

k =
3kBT

b2 , (2.3)

where kB is Boltzmann’s constant and T the temperature. With this choice for the spring
characteristics, at equilibrium, the Boltzmann distribution of the bonds between the segments
will be Gaussian and the end-to-end distance will obey Eq. (2.2). Of course the Gaussian
chain is only a static model of a polymer. In the rest of this chapter we will focus on dynamical
models.

2.2 The Rouse model

The simplest dynamical model of a polymer is the Rouse model. In this model it is as-
sumed that the surrounding particles (polymers and/or solvent molecules) merely constitute a
stochastic background, and corresponding friction, to a Gaussian chain. [118] This means that
both entanglements and hydrodynamic interactions are assumed to be unimportant. When this
model is applied to dilute polymeric solutions it gives rather bad results, indicating the impor-
tance of hydrodynamic interactions. However, when applied to polymeric melts the model is
found to be much more appropriate, because in polymeric melts the friction may be thought
of as being caused by the motion of the chain relative to the rest of the material, which to
a first approximation may be taken at rest. Propagation of a velocity field like in a normal
liquid is highly improbable, meaning that hydrodynamic interactions are screened. [13, 30]
A prerequisite is that the polymer chains are not very long, otherwise entanglements with
surrounding chains will highly constrain the molecular motions.

12
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Figure 2.2: Schematic picture of a Rouse
chain. A segment i experiences harmonic
interaction forces with its bonded neigh-
bours. Intermolecular interactions are ap-
proximated by a friction force −ζVi, where
Vi is the velocity, and a random force FR

i .

Vi

-�Vi

k( - )R Ri-1 i

k( - )R Ri+1 i

Fi

R

1

N
i

2.2.1 Equations of motion

In the Rouse model, the friction force on each segment is assumed proportional to its velocity
and directed opposite to its velocity. The constant of proportionality, the friction coefficient
ζ , is assumed to be independent of the position of the segment in the medium. The segment
will also experience a stochastic, or random, force FR (t). In view of the chaotic character of
the stochastic forces, the following assumption seems to be appropriate:〈

FR (t)
〉

= 0. (2.4)

In Fig. 2.2 the forces acting on a segment i in a Rouse chain are summarized. The resulting
equations of motion are the following Langevin equations:

ζ
dR1

dt
= −3kBT

b2

(
R1 −R2

)
+FR

1 , (2.5)

ζ
dRi

dt
= −3kBT

b2

(
2Ri −Ri−1 −Ri+1

)
+FR

i , (2.6)

ζ
dRN

dt
= −3kBT

b2

(
RN −RN−1

)
+FR

N . (2.7)

Eq. (2.6) applies when i = 2, . . . ,N − 1. Notice that, in writing down these equations, the
inertial effects have been neglected. The Rouse model, by its formulation, applies only to
large time and length scales. In the diffusive limit, i.e., for times t > M/ζ , where M is the
mass of a segment, inertial effects may be ignored.

It is assumed that the segments are slow compared with the stochastic variables. This
means that memory effects can be ignored and that the autocorrelation of the stochastic force
can be approximated by a δ -function (Markov approximation). The equipartition theorem
states that, for large times, the expectation value for the kinetic energy of a segment should
go to 3

2 kBT . On integration of the equation of motion of a single segment, this premises leads
to the following relation between the cartesian α and β components of the stochastic forces
and the friction coefficient (fluctuation-dissipation theorem):〈

FR
iα (t)FR

jβ
(
t ′
)〉

= 2kBTζδi jδαβδ
(
t − t ′

)
. (2.8)
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2.2.2 Normal modes

The equations of motion, Eqs. (2.5) - (2.7) can be solved by transforming to the normal
coordinates,

Xk =
1
N

N

∑
i=1

AkiRi (k = 0, . . . ,N −1) , (2.9)

where Aki is defined as

Aki = cos

[
kπ
N

(i−1/2)
]

. (2.10)

In this expression a term 1/2 is included to assure that the Langevin equations are consistent at
the boundaries of the chain. [62] The inverse of Eq. (2.9) expresses the segment coordinates
in terms of the normal coordinates,

Ri = X0 +2
N−1

∑
k=1

XkAki. (2.11)

The equations of motion in normal coordinates read

ζ
dXk

dt
= −3kBT

b2 4sin2
[

kπ
2N

]
Xk +Fk, (2.12)〈

F0α (t)F0β
(
t ′
)〉

= 2kBT N−1ζδαβ δ
(
t − t ′

)
, (2.13)〈

Fkα (t)Fkβ
(
t ′
)〉

= kBT N−1ζδαβδ
(
t − t ′

)
(k �= 0) . (2.14)

Eqs. (2.13) and (2.14) were obtained from Eq. (2.8) by defining

Fk =
1
N

N

∑
i=1

AkiF
R
i , (2.15)

and using the property

1
N

N

∑
i=1

Aki = δk,0 (0 ≤ k < 2N) . (2.16)

The normal modes Xk are usually called the Rouse modes. The zeroth mode describes the
motion of the center of mass, X0 = Rcm; all other modes are associated with internal motions
of the chain, mode k roughly corresponding with motion of a subchain of size N/k. In the
next chapters, the Rouse mode analysis will be applied to more realistic linear chains. The
Rouse modes are then used as generalized coordinates, which can be introduced to analyze
the dynamical properties of any dynamical model, not necessarily the Rouse model. With
this objective in mind, measurable properties will in the rest of this section first be given in
general terms of Rouse mode amplitudes and correlation functions, and then be evaluated
explicitly for the Rouse model.
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The equation of motion of the center of mass can readily be solved:

ζ
dRcm

dt
= ζ

dX0

dt
= F0, (2.17)

Rcm (t) = Rcm (0)+ζ−1
∫ t

0
dτF0 (τ) . (2.18)

So the mean square displacement of the center of mass of the Rouse chain is equal to〈
(Rcm (t)−Rcm (0))2

〉
=
〈

ζ−2
∫ t

0
dτ
∫ t

0
dτ ′F0 (τ) ·F0

(
τ ′
)〉

=
6kBT
Nζ

t, (2.19)

which is always proportional to time, with the well-known Einstein relation between the
diffusion and friction coefficient: [32]

D =
kBT
Nζ

. (2.20)

Notice that the diffusion coefficient scales inversely proportional to the length (and weight)
of the polymer chain.

Within the Rouse model, according to Eq. (2.12), the Rouse modes are mutually ortho-
gonal and the correlation functions for k > 0 are exponentially decaying:〈

Xk (t) ·Xk (0)
〉 ≡ 〈

X2
k

〉
Ck (t)

=
〈
X2

k

〉
exp
(−t/τk

)
, (2.21)

τ−1
k = 4W sin2

[
kπ
2N

]
, (2.22)

W =
3kBT
ζb2 , (2.23)

where we have defined the normalized autocorrelation function Ck (t) and the characteristic
frequency W . In case k � N, the relaxation times τk can be approximated as

τk ≈
1

π2W

(
N
k

)2

. (2.24)

From the last equation it is clear that the lower Rouse modes, which represent motions with
larger wavelengths, are also slower modes. The relaxation time of the slowest mode, k = 1,
is sometimes referred to as the Rouse time τR.

The amplitudes of the Rouse modes can be calculated by rewriting the Boltzmann statis-
tical weight of a chain configuration, using Eq. (2.11):

P
(
R1, . . . ,RN

)
=

1
Z

exp

[
− 3

2b2

N

∑
i=2

(
Ri −Ri−1

)2

]

=
1
Z

exp

[
−12N

b2

N−1

∑
k=1

Xk ·Xk sin2
(

kπ
2N

)]
, (2.25)
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where Z is a normalization constant (the partition function). Since the transformation to
the Rouse coordinates is a linear transformation from one set of orthogonal coordinates to
another, the corresponding Jacobian is simply a constant. The distribution of Rouse modes is
therefore given by Eq. (2.25), and since it is a simple product of independent Gaussians, the
amplitudes of the Rouse modes can easily be calculated:〈

X2
k

〉
=

b2

8N sin2 ( kπ
2N

) . (2.26)

In case k � N, the amplitudes can be approximated by〈
X2

k

〉≈ Nb2

2π2

1
k2 . (2.27)

Note the similarity between the scaling of the amplitudes and the scaling of the relaxation
times with k of the Rouse modes. Using this similarity, it is easy to express the normalized
autocorrelation of the end-to-end vector, Eq. (2.1), in terms of relaxation times only (this will
be of use in Chapter 3). The end-to-end vector is, in terms of Rouse modes,

Re = −4
N−1

∑
k=odd

Xk cos

(
kπ
2N

)
, (2.28)

and its autocorrelation function is

〈Re (t) ·Re (0)〉 = 16
N−1

∑
k=odd

〈
X2

k

〉
cos2

(
kπ
2N

)
Ck (t) . (2.29)

The result will be dominated by k values which are very small compared with N. In the limit
N � 1, and using Eqs. (2.26) and (2.22), the normalized autocorrelation for the Rouse model
is given by

〈Re (t) ·Re (0)〉
〈R2

e〉
=

∑k=odd τke−t/τk

∑k=odd τk
. (2.30)

2.2.3 Segmental motion

Important measurable dynamic properties of polymers are the dynamic structure factor and
the mean square displacement of individual segments. Using Eq. (2.11) and the fact that dif-
ferent modes are not correlated, the mean square displacement of segment i can be expressed
in terms of Rouse mode amplitudes and autocorrelation functions:〈

(Ri (t)−Ri (0))2
〉

=
〈(

X0 (t)−X0 (0)
)2
〉

+8
N−1

∑
k=1

〈
X2

k

〉[
1−Ck (t)

]
A2

ki. (2.31)

Averaging over all segments, and introducing Eqs. (2.19) - (2.21) and (2.26), the mean square
displacement of a typical segment in the Rouse model is

gseg (t) =
1
N

N

∑
i=1

〈
(Ri (t)−Ri (0))2

〉
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= 6Dt +6D
N−1

∑
k=1

τk

(
1− e−t/τk

)
. (2.32)

Two limits may be distinguished. First, when t is very large, t � τR = τ1, the first term in Eq.
(2.32) will dominate, yielding gseg (t)≈ 6Dt. This is consistent with the fact that the polymer
as a whole diffuses with diffusion coefficient D. Secondly, when t � τR the sum over k in
Eq. (2.32) will dominate. If N � 1 the relaxation times can be approximated by Eq. (2.24)
and the sum can be replaced by an integral. Performing the integral, one obtains

gseg (t) ≈
(

12b2kBT
πζ

)1/2

t1/2 (t � τR, N � 1) . (2.33)

So, at short times the mean square displacement of a typical Rouse segment is subdiffusive
with an exponent 1/2, and is independent of the number of segments N in the chain.

The dynamic structure factor of a single chain is defined as

S (q, t) =
1
N

N

∑
i=1

N

∑
j=1

〈
exp
{

iq ·
[
Ri (t)−R j (0)

]}〉
. (2.34)

Inserting Eq. (2.11) yields

S (q, t) =
1
N

exp

{
−q2

6

〈(
X0 (t)−X0 (0)

)2
〉}

×
{

N

∑
i=1

N

∑
j=1

exp

[
−2q2

3

N−1

∑
k=1

〈
X2

k

〉([
Aki −Ak j

]2
+2AkiAk j

[
1−Ck (t)

])]}
, (2.35)

where it is assumed that the Rouse modes remain orthogonal and that the segmental dis-
placements, and consequently the random displacements of the Rouse modes, are Gaussianly
distributed. [101, 129] Inserting Eqs. (2.19) - (2.21) and (2.26), and using the property

N−1

∑
k=1

[
Aki −Ak j

]2

sin2
(

kπ
2N

) = 2N |i− j| , (2.36)

the dynamic structure factor of a Rouse chain can be expressed as

S (q, t) =
1
N

exp
{−q2Dt

}
×
{

N

∑
i=1

N

∑
j=1

exp

[
−q2b2

6
|i− j|−2q2D

N−1

∑
k=1

AkiAk jτk

(
1− e−t/τk

)]}
. (2.37)

2.2.4 Shear relaxation and viscosity

Macroscopic viscosity and stress tensor

Suppose the fluid velocity on a macroscopic scale is described by the fluid velocity field u(r).
The Navier-Stokes equation then reads

ρ
D
Dt

u = ∇ ·σσσ , (2.38)
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where D/Dt ≡ ∂/∂ t +u ·∇ is the total derivative and σσσ is the stress tensor. Many fluids may
be described by assuming that the stress tensor σσσ consists of a part, which is independent
of the fluid velocity u, and a part which depends linearly on the derivatives ∂ui/∂ r j. In
hydrodynamics it is shown that the most general stress tensor having these properties reads

σσσ = −
{

P+
(

2
3
η −κ

)
∇ ·u

}
I+η

{
∇u+(∇u)T

}
, (2.39)

with I the unit tensor, P the pressure, and η and κ the shear and bulk viscosities, respectively.
The shear viscosity (and other viscoelastic properties) can be studied by applying a shear
flow, with fluid velocity components given by

ux (r, t) = κ (t)ry, uy = 0, uz = 0. (2.40)

If the shear rate κ (t) is small enough, the stress tensor depends linearly on κ (t) and can be
written as [30, 38]

σxy (t) =
∫ t

−∞
dτG(t − τ)κ (τ) , (2.41)

where G(t) is called the shear relaxation modulus. An important special case is stepwise
shear, which is switched on at t = 0:

κ (t) =
.
γ Θ(t) , (2.42)

σxy (t) =
.
γ
∫ t

0
dτG(t − τ) , (2.43)

where Θ(t) is the Heaviside function and
.
γ is the shear rate. Comparing Eq. (2.40) and the

off-diagonal elements of Eq. (2.39), the viscosity can now be expressed as

η = lim
t→∞

σxy (t)
κ (t)

= lim
t→∞

∫ t

0
dτG(t − τ) =

∫ ∞

0
dτG(τ) , (2.44)

where the last two expressions are valid for small shear rates only. The limit t → ∞ must be
taken because during the early stages elastic stresses are built up.

Microscopic expressions for the viscosity and stress tensor

Eq. (2.44) is not yet very useful because the viscosity is not related to the microscopic prop-
erties of the molecular model. Microscopic expressions for transport properties such as the
viscosity can be found by relating the relaxation of a macroscopic disturbance to spontaneous
fluctuations in an equilibrium system. Close to equilibrium there is no way to distinguish be-
tween spontaneous fluctuations and deviations from equilibrium that are externally prepared.
Since one cannot distinguish, according to the regression hypothesis of Onsager, [17] the
regression of spontaneous fluctuations should coincide with the relaxation of macroscopic
variables to equilibrium. A derivation for the viscosity and many other thermal transport
coefficients can be found in Ref. [79]. The result for the viscosity is

η =
V

kBT

∫ ∞

0
dτ
〈
σmicr

xy (τ)σmicr
xy (0)

〉
, (2.45)
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where V is the volume in which the microscopic stress tensor σσσmicr is calculated. Eq. (2.45)
is sometimes referred to as the Green-Kubo expression for the viscosity. Using Onsager’s
regression hypothesis, it is possible to relate also the integrand of Eq. (2.45) to the shear
relaxation modulus G(t) in the macroscopic world:

G(t) =
V

kBT

〈
σmicr

xy (t)σmicr
xy (0)

〉
(2.46)

The microscopic stress tensor in Eqs. (2.45) and (2.46) is defined as

σσσmicr = − 1
V

Ntot

∑
i=1

(MViVi +RiFi) , (2.47)

where Vi and Fi are the velocity of and the force on particle i, respectively. The sum must be
taken over all Ntot particles in the system. In most polymer melt systems the first (kinetic) part
may be neglected because the stress is dominated by the interactions between the segments.

Calculation for the Rouse model

The above results suggest that the shear relaxation modulus and viscosity of the Rouse model
can be obtained by two different approaches: either by applying an external shear field or by
analyzing the relaxations in equilibrium. We will start with the first approach.

The idea is to apply a stepwise shear field, and evaluate the resulting stress using Eq.
(2.47). [13, 30] As already mentioned, the sum over i in Eq. (2.47) must be taken over all
particles of all chains in the system, i.e., the stress tensor is a collective property. In the
Rouse model, however, there is no correlation between the dynamics of one chain and the
other, so one may just as well analyze the stress of only one chain and make an ensemble
average over all initial configurations. The microscopic stress tensor of a Rouse chain in a
specific configuration, neglecting the kinetic contributions, is equal to

σσσmicr =
1
V

3kBT
b2

[
R1

(
R1 −R2

)
+

N−1

∑
i=2

Ri

(
2Ri −Ri−1 −Ri+1

)
+RN

(
RN −RN−1

)]
.(2.48)

Introducing the Rouse modes, Eq. (2.11), and using the properties ∑N
i=1 AkiAk′i = δkk′N/2

and Eq. (2.16), the xy-component of the microscopic stress tensor of this configuration can
be expressed in terms of the Rouse modes,

σmicr
xy (t) =

1
V

3kBT
b2 8N

N−1

∑
k=1

Xkx (t)Xky (t)sin2
(

kπ
2N

)
. (2.49)

To evaluate the stress tensor at time t, we must average σmicr
xy (t) over all initial configurations

which have evolved under the conditions of Eqs. (2.40) and (2.42) To this end, we augment
the Langevin equations, Eqs. (2.5) - (2.7), with terms of the form

.
γ Riyêx, representing the

effects of a shear field. Transforming to normal coordinates, we obtain

dXk

dt
= − 1

τk
Xk+

.
γ Xkyêx +Fk, (2.50)
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where τk and Fk are given by Eqs. (2.21) and (2.14), respectively. From this we find

d
dt

〈
Xkx (t)Xky (t)

〉
=
〈

dXkx

dt
(t)Xky (t)

〉
+
〈

Xkx (t)
Xky

dt
(t)
〉

= − 2
τk

〈
Xkx (t)Xky (t)

〉
+

.
γ
〈

Xky (t)Xky (t)
〉

+
〈

Fkx (t)Xky (t)
〉

+
〈

Xkx (t)Fky (t)
〉

. (2.51)

It can be argued (see Ref. [13]) that the last two terms vanish. Moreover, for small values of
.
γ ,
〈

Xky (t)Xky (t)
〉

may be approximated as one third of the equilibrium value
〈
X2

k

〉
. Using〈

Xkx (0)Xky (0)
〉

= 0, we find from Eq. (2.51)

〈
Xkx (t)Xky (t)

〉
=
∫ t

0
dτ

.
γ 1

3

〈
X2

k

〉
e−2(t−τ)/τk . (2.52)

We can now evaluate the average of Eq. (2.49) to get the stress at time t:

σxy (t) =
〈
σmicr

xy (t)
〉

=
.
γ
∫ t

0
dτ

kBT
V

8N
b2

N−1

∑
k=1

〈
X2

k

〉
sin2
(

kπ
2N

)
e−2(t−τ)/τk . (2.53)

On comparison with Eq. (2.43), we recognize that the shear relaxation modulus of the Rouse
model equals

G(t) =
kBT
V

8N
b2

N−1

∑
k=1

〈
X2

k

〉
sin2
(

kπ
2N

)
e−2t/τk (2.54)

=
ckBT

N

N−1

∑
k=1

e−2t/τk , (2.55)

where in the last line we have used the Rouse expectation value for
〈
X2

k

〉
, Eq. (2.26), and

c = N/V is the number density of segments.
In the other approach, explicit introduction of a shear field is not neccesary, as the fluc-

tuations which occur naturally in the Rouse model can also be used to evaluate the stress
relaxation. Combining Eqs. (2.49) and (2.26), the xy-component of the microscopic stress
tensor of a Rouse chain in a specific configuration is

σmicr
xy (t) =

3kBT
V

N−1

∑
k=1

Xkx (t)Xky (t)〈
X2

k

〉 . (2.56)

The correlation of the xy-component of the microscopic stress tensor at time t = 0 with the
one at time t = t is therefore

σmicr
xy (t)σmicr

xy (0) =
(3kBT )2

V 2

N−1

∑
k=1

N−1

∑
k′=1

Xkx (t)Xky (t)〈
X2

k

〉 Xk′x (0)Xk′y (0)〈
X2

k′

〉 . (2.57)
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To obtain the shear relaxation modulus, according to Eq. (2.46), the ensemble average of Eq.
(2.57) is needed, i.e. an average must be taken over all possible configurations at t = 0. Now,
since the Rouse modes are Gaussian variables, all the ensemble averages of products of an
odd number of Xk’s are zero and the ensemble averages of products of an even number of
Xk’s can be written as a sum of products of averages of only two Xk’s. [116] For the even
term in Eq. (2.57) we find:〈

Xkx (t)Xky (t)Xk′x (0)Xk′y (0)
〉

=
〈

Xkx (t)Xky (t)
〉〈

Xk′x (0)Xk′y (0)
〉

+
〈

Xkx (t)Xk′y (0)
〉〈

Xky (t)Xk′x (0)
〉

+
〈
Xkx (t)Xk′x (0)

〉〈
Xky (t)Xk′y (0)

〉
. (2.58)

The first four ensemble averages are zero because, for a Rouse chain in equilibrium, there
is no correlation between different cartesian components. The last two ensemble averages
are nonzero only when k′ = k, since the Rouse modes are mutually orthogonal. Using Eq.

(2.21) and
〈
X2

kx

〉
=
〈

X2
ky

〉
= 1

3

〈
X2

k

〉
, the shear relaxation modulus of a Rouse chain can be

expressed as

G(t) =
kBT
V

N−1

∑
k=1

〈
Xkx (t)Xkx (0)

〉
1
3

〈
X2

k

〉
〈

Xky (t)Xky (0)
〉

1
3

〈
X2

k

〉 =
ckBT

N

N−1

∑
k=1

C2
k (t) . (2.59)

This is equivalent to Eq. (2.55).
In Chapter 3 the integral of the shear relaxation modulus up to time t will be compared

with the result of the Rouse model, which equals

ηR (t) =
ckBT

N

N−1

∑
k=1

τk

2

(
1− e−2t/τk

)
. (2.60)

The limit of this integral for time to infinity is the viscosity. For N � 1 this can be approxi-
mated as

ηR ≈ π2

12
ckBT

N
τR. (2.61)

So, because τR ∝ N2, the viscosity of the Rouse model scales linearly with chain length N for
constant segmental friction coefficient ζ . However, as will be shown in Chapters 4 and 5, a
stronger N dependence is observed in real unentangled melts because the density and, more
important, the segmental friction coefficient increase with increasing N.

2.3 The tube model

Studies of the mechanical properties of concentrated polymeric liquids and melts reveal a
nontrivial molecular weight dependence of the viscosity and rubber-like elastic behavior on
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Figure 2.3: The motion of a long chain in
a melt is severely constrained by entangle-
ments with surrounding chains.

time scales which increase rapidly with chain length. The observed behavior is rather uni-
versal, independent of temperature or molecular species (as long as the polymer is linear
and flexible), which indicates that the phenomena are governed by general features of poly-
mers. [30] One of these general features, of course, is the fact that the bonds in polymer
chains cannot cross each other. These topological interactions seriously affect the dynam-
ical properties since they impose constraints on the motion of polymers, see Fig. 2.3 In
the tube (or reptation) model, introduced by De Gennes [24, 25] and further refined by Doi
and Edwards [30], the complicated topological interactions are simplified to an effective tube
of constant contour length, surrounding each polymer chain. In order to move over large
distances, the chain has to leave the tube by means of longitudinal, reptational, motions

The concept of a tube introduced above, clearly has only a statistical (mean field) mean-
ing. The tube can change by two mechanisms. First by means of the motion of the central
chain itself, by which the chain leaves parts of its original tube, and generates new parts.
Secondly, the tube will reorganize because of motions of the chains which build up the tube.
Also, the contour length of the tube is not constant, but fluctuating. It is generally believed
that tube reorganizations of the second kind and contour length fluctuations are unimportant
for extremely long chains. For the case of medium long chains, subsequent corrections can
be made to account for the reorganization and fluctuation of tubes. Whether the tube picture
is indeed correct for polymer solutions or melts still remains a matter for debate, but many
experimental results suggest that reptation is the dominant mechanism for the dynamics of a
chain in the highly entangled state. In this section we will give a mathematical description
of the original tube model, in which tube fluctuations are ignored. Results for segmental
motion and viscoelasticity will be derived. In the next section, the corrections dealing with
reorganization and fluctuations of the tube will be discussed qualitatively.

2.3.1 Definition of the model

In the tube model, the chain fluctuates around the tube axis, which is also called the primitive
chain. By some fluctuation the chain may store some excess mass in part of the tube. This
mass may diffuse along the primitive chain and finally leave the tube. The chain thus creates a
new piece of tube and at the same time destroys part of the tube on the other side, see Fig. 2.4.
This reptative motion will determine the long time motion of the chain. The main concept of
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Figure 2.4: A reptating chain escaping from
its tube.

new

old

the model is the primitive chain, while the details of the polymer itself are considered to be
to a large extent irrelevant. For conveniency, the simple Rouse model (with parameters N, b
and ζ as in the previous section) is chosen as the underlying basic chain.

The dynamics of the primitive chain is characterized by the following assumptions. (i) The
contour length L of the primitive chain is assumed to be constant. The position along the
primitive chain will be indicated by the continuous variable s ∈ [0,L]. (ii) The configurations
of the primitive chain are assumed to be Gaussian, i.e.〈(

R(s)−R
(
s′
))2
〉

= d
∣∣s− s′

∣∣ , (2.62)

where d is the step length of the primitive chain, or tube diameter. (iii) The primitive chain
can move back and forth only along itself with diffusion coefficient DR = kBT/(Nζ ), i.e.
with the Rouse diffusion coefficient, because the motion of the primitive chain corresponds
to the overall translation of the Rouse chain along the tube.

Apparently two new parameters have been introduced, the contour length L and the tube
diameter d. Only one of them however is independent, because they are related by Nb2 =〈
R2

e

〉
= Ld, i.e.,

L =
Nb2

d
. (2.63)

2.3.2 Segmental motion

In this subsection it will be shown that the mean square displacement of a typical segment in
the tube model behaves like

gseg (t) ∝


t1/2 (t < τe) ,
t1/4 (τe < t < τR) ,
t1/2

(
τR < t < τd

)
,

t1
(
t > τd

)
.

(2.64)

Here τR is the Rouse time which is equal to τ1 in Eq. (2.22). The meaning of τe and τd will
become clear in the remaining part of this section. The different time regimes in Eq. (2.64)
will now be treated separately.
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(i) t < τe

At short times a Rouse segment does not know about any tube constraints. According to Eq.
(2.33) then

gseg (t) =
(

12b2kBT
πζ

)1/2

t1/2. (2.65)

Once the segment has moved a distance d, it will feel the constraints of the tube, and a new
regime will set in. The time at which this happens is given by

τe =
πζd4

12b2kBT
. (2.66)

Notice that this is independent of N.

(ii) τe < t < τR

On this time and length scale, the segment performs random motions, still constrained by the
fact that the segment is part of a chain because t < τR. Orthogonally to the primitive chain
these motions do not lead to any displacement, because of the constraints implied by the tube.
Only along the primitive chain the segments may diffuse free of any other constraints than
the one implied by the fact that it belongs to a chain. The diffusion therefore is given by the
1-dimensional analogue of Eq. (2.65),〈

(si (t)− si (0))2
〉

=
1
3

(
12b2kBT

πζ

)1/2

t1/2, (2.67)

where si (t) is the position of segment i along the primitive chain at time t. It is assumed that
for times t < τR the chain as a whole does not move, i.e. that the primitive chain does not
change. Using Eq. (2.62) then

gseg (t) = d

(
12b2kBT

9πζ

)1/4

t1/4, (2.68)

where was assumed
〈∣∣si (t)− si (0)

∣∣〉≈ 〈(si (t)− si (0))2
〉1/2

.

(iii) τR < t < τd

The segment still moves along the primitive path. Now however t > τR, which means that
one should use the 1-dimensional analogue of the long time limit of Eq. (2.32), i.e.〈

(si (t)− si (0))2
〉

= 2DRt. (2.69)

Again, assuming that the tube does not change appreciably during time t, one gets

gseg (t) = d

(
2kBT
Nζ

)1/2

t1/2. (2.70)
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Figure 2.5: When the primitive chain moves
a distance ∆ξ along its contour, the segment
s comes to the point where the segment s +
∆ξ was at time t.

chain at time t

chain at time t+  t

R(s,t+  t)

R(s,t)

From this treatment it is clear that τd is the time it takes for the chain to create a tube which
is uncorrelated with the old one.

(iv) t > τd

This is the regime in which reptation dominates. On this time and length scale a definite value
of s may be attributed to every segment. The goal then is to calculate

ϕ(s, t) = 〈(R(s, t)−R(s,0))2〉, (2.71)

where R(s, t) is the position of segment s at time t. In order to calculate ϕ(s, t) it is useful to
introduce

ϕ(s,s′; t) = 〈(R(s, t)−R(s′,0))2〉, (2.72)

i.e. the mean square distance between segment s at time t and segment s′ at time zero. Ac-
cording to Fig. 2.5, for all s, except s = 0 and s = L, the following relation is valid:

ϕ(s,s′; t +∆t) = 〈ϕ(s+∆ξ ,s′; t)〉, (2.73)

where ∆ξ according to the definition of the primitive chain is a stochastic variable. The
average on the right hand side has to be taken over the distribution of ∆ξ . Expanding the
right hand side of Eq. (2.73) one gets

〈ϕ(s+∆ξ ,s′; t)〉 = ϕ(s,s′; t)+ 〈∆ξ 〉 ∂
∂ s

ϕ(s,s′; t)+
1
2
〈(∆ξ )2〉 ∂ 2

∂ s2 ϕ(s,s′; t)

≈ ϕ(s,s′; t)+DR∆t
∂ 2

∂ s2 ϕ(s,s′; t). (2.74)

Introducing this into Eq. (2.73) and taking the limit for ∆t going to zero, a diffusion equation
results:

∂
∂ t

ϕ(s,s′; t) = DR
∂ 2

∂ s2 ϕ(s,s′; t). (2.75)

In order to complete the description of reptation the boundary conditions going with this
diffusion equation have to specified. These are given by

ϕ(s,s′; t)|t=0 = d|s− s′|, (2.76)
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∂
∂ s

ϕ(s,s′; t)|s=L = d, (2.77)

∂
∂ s

ϕ(s,s′; t)|s=0 = −d. (2.78)

The first of these is obvious. The second follows from
∂
∂ s

ϕ(s,s′; t)|s=L = 2〈∂R(s, t)
∂ s

|s=L · (R(L, t)−R(s′,0))〉

= 2〈∂R(s, t)
∂ s

|s=L · (R(L, t)−R(s′, t))〉+2〈∂R(s, t)
∂ s

|s=L · (R(s′, t)−R(s′,0))〉

= 2〈∂R(s, t)
∂ s

|s=L · (R(L, t)−R(s′, t))〉

=
∂
∂ s

〈(R(s, t)−R(s′, t))2〉|s=L

=
∂
∂ s

d|s− s′|s=L = d. (2.79)

Condition Eq. (2.78) follows from a similar reasoning.
The solution of Eqs. (2.75) to (2.78) is given without proof:

ϕ(s,s′; t) = |s− s′|d +2DR
d
L

t

+4
Ld
π2

∞

∑
k=1

1
k2 (1− e−tk2/τd )cos

(
kπs
L

)
cos

(
kπs′

L

)
, (2.80)

where

τd =
L2

π2DR
=

1
π2

b4

d2

ζ
kBT

N3. (2.81)

Notice that τd becomes much larger than τR for large N, see Eqs. (2.24) and (2.81). If the
number of steps in a primitive chain is defined by

Z =
Nb2

d2 =
L
d

, (2.82)

then the ratio between τd and τR is
τd

τR
= 3Z. (2.83)

Now taking the limit s → s′ one gets

〈(R(s, t)−R(s,0))2〉 = 2DR
d
L

t +4
Ld
π2

∞

∑
k=1

cos2
(

kπs
L

)
(1− e−tk2/τd )

1
k2 . (2.84)

For t > τd this results in diffusive behaviour with diffusion constant

D =
1
3

DR
d
L

=
1
3

d2

b2

kT
ζ

1
N2 . (2.85)

Notice that this is proportional to N−2, whereas the diffusion coefficient of the Rouse model
was proportional to N−1.
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Figure 2.6: Schematic logarithmic plot of
the time behavior of the shear relaxation
modulus G(t) as measured in a polymer
melt; N1 < N2.
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2.3.3 Shear relaxation and viscosity

Experimentally the shear relaxation modulus G(t) of a polymer melt turns out to be like in
Fig. 2.6. [30] Two regimes may be distinguished.

(i) t < τe

At very short times the chain behaves like a 3-dimensional Rouse chain. Using Eq. (2.55),

G(t) =
c
N

kBT
N−1

∑
k=1

exp
(−2k2t/τR

)
≈ c

N
kBT

∫ ∞

0
dk exp

(−2k2t/τR

)
=

c
N

kBT

√
π
8

(τR

t

)1/2
. (2.86)

which decays as t−1/2. At t = τe this possibility to relax ends. The only way for the chain to
relax any further is by breaking out of the tube.

(ii) t > τe

The stress that remains in the system is caused by the fact that the chains are trapped in
twisted tubes. By means of reptation the chain can break out of its tube. The newly generated
tube contains no stess. So, it is plausible to assume that the stress at any time t is proportional
to the fraction of the original tube that is still part of the tube at time t. This fraction is called
Ψ(t). So,

G(t) = G0
NΨ(t) . (2.87)

On the reptation time scale, τe is practically zero, so it is allowed to set Ψ(τe) = Ψ(0) = 1.
To make a smooth transition from the Rouse regime to the reptation regime, Eqs. (2.86) and
(2.87) are matched at t = τe, yielding

G0
N = G(τe) =

c
N

kBT

√
π
8

(
τR

τe

)1/2

=
c√
2π

kBT
b2

d2 . (2.88)
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Notice that the plateau value G0
N is independent of the chain length N. The numerical pre-

factor of 1/
√

2π in Eq. (2.88) is not rigorous because in reptation theory the time τe, at which
the Rouse-like modulus is supposed to be instantaneously replaced by the reptation-like mo-
dulus, is not defined in a rigorous manner. A calculation based on stress relaxation after a
large step strain gives a numerical prefactor of 4/5 [30], i.e.

G0
N =

4
5

ckBT b2

d2 =
4
5

ckBT
Ne

. (2.89)

In the last equation we have defined the entanglement length Ne. In most experiments the
entanglement length (or more precisely the entanglement molecular weight) is estimated from
the value of the plateau modulus. We will return to this in Chapter 5.

Ψ(t) will now be calculated. Take a look at

〈
u
(
s′, t
) ·u(s,0)

〉≡〈∂R(s′, t)
∂ s′

· ∂R(s,0)
∂ s

〉
. (2.90)

The vector u(s′, t) is the tangent to the primitive chain, at segment s′ at time t. Because the
primitive chain has been parametrized with the contour length, u ·u =(�R ·�R)/(�s)2 =
1, i.e. the tangent has length 1. Then, using Eq. (2.72),〈

u
(
s′, t
) ·u(s,0)

〉
= −1

2
∂ 2

∂ s∂ s′
ϕ
(
s′,s; t

)
(2.91)

= dδ
(
s− s′

)− 2d
L

∞

∑
k=1

(1− e−tk2/τd )sin

(
kπs
L

)
sin

(
kπs′

L

)
=

2d
L

∞

∑
k=1

e−tk2/τd sin

(
kπs
L

)
sin

(
kπs′

L

)
, (2.92)

where was used:

2
L

∞

∑
k=1

sin

(
kπs
L

)
sin

(
kπs′

L

)
= δ
(
s− s′

)
. (2.93)

Using this last equation, one also finds〈
u
(
s′,0
) ·u(s,0)

〉
= dδ

(
s− s′

)
. (2.94)

This equation states that there is no correlation between the tangents to the primitive chain
at a segment s, and at another segment s′. If we look at 〈u(s′, t) ·u(s,0)〉 as a function of s′,
at time t, we see that the original delta function has broadened and lowered. However, the
tangent u(s′, t) can only be correlated to u(s,0) by means of diffusion of segment s′, during
the time interval [0, t], to the place where s was at time t = 0, and still lies in the original
tube. So, 1

d 〈u(s′, t) ·u(s,0)〉 is the probability density that, at time t, segment s′ lies within
the original tube at the place where s was initially. Integrating over s′ gives us the probability
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Ψ(s, t) that at time t any segment lies within the original tube at the place where segment s
was initially. In other words, the chance that the original tube segment s is still up-to-date, is

Ψ(s, t) =
1
d

∫ L

0
ds′
〈
u
(
s′, t
) ·u(s,0)

〉
=

4
π

∞

∑
k=1

1
k

sin

(
kπs
L

)
e−tk2/τd . (2.95)

The fraction of the original tube that is still intact at time t, is therefore given by

Ψ(t) =
1
L

∫ L

0
dsΨ(s, t)

=
8
π2

∞

∑
k=odd

1
k2 e−tk2/τd , (2.96)

where only terms with odd k occur in the sum. This formula shows why τd is the time needed
by the chain to reptate out if its tube; for t > τd , Ψ(t) is falling to zero quickly. According to
Eq. (2.81), this maximum relaxation time τd is proportional to N3.

Finally, the viscosity of a system of reptating chains will be calculated. Using Eq. (2.44)
one finds

η =
∫ ∞

0
G(t)dt = G0

N
8
π2

∞

∑
k=odd

1
k2

∫ ∞

0
dte−tk2/τd

= G0
N

8
π2 τd

∞

∑
k=odd

1
k2

∫ ∞

0
dτe−τk2

=
π2

12
G0

Nτd . (2.97)

Since G0
N is independent of N, the viscosity, like τd , is proportional to N3. This is close to,

but underestimating, the experimentally observed scaling η ∝ N3.4. The discrepancy may be
removed by introducing other relaxation modes in the tube model.

2.4 Other relaxation modes in the tube model

2.4.1 Contour length fluctuation

In the original tube model, described in the previous sections, the primitive chain was re-
garded as an inextensible string of contour length L. In reality, the contour length of a primi-
tive chain can fluctuate in time. These fluctuations lead to significant reduction of the longest
time scales in the dynamics of medium long chains,1 as will be explained in this section.

The statistical distribution of contour lengths can be estimated by calculating the proba-
bility that a certain conformation of the primitive chain is realized. [30] This probability will
be proportional to the number of conformations of the Rouse chain which are represented by

1 In this context, medium long chains are chains with contour lengths of only a few times the tube diameter.
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that primitive chain. The simplest hypothesis is to constrain the Rouse chain within a straight
tube of length L. Furthermore one has to take into account the multiplicity of states with the
same contour length L. Combination of both effects leads to the following contour length
distribution:

P(L) ∝ exp

[
− 3

2Nb2 (L− L̄)2
]

for L̄ � N1/2b, (2.98)

where L̄ = Nb2/d is the average contour length. Using Eq. (2.98), the average fluctuation in
L can be calculated as:

∆L̄ =
〈
∆L2〉1/2

=
[∫ ∞

0
dLP(L)(L− L̄)2

]1/2

=
(
Nb2/3

)1/2
. (2.99)

The relative fluctuations decrease with chain length,

∆L̄
L̄

=
(

d2

3Nb2

)1/2

=
(

d
3L̄

)1/2

=
1√
3Z

, (2.100)

justifying the inextensible string approximation when Z � 1, i.e. L̄ � d. However, when
the chain is not extremely long, the fluctuations lead to a faster escape of the chain from
the original tube than would be predicted in the original tube model. If the contour length
fluctuation is neglected, the disentanglement time is proportional to the time necessary for
the chain to move the distance L̄, see Eq. (2.81),

τ(NF)
d

=
L̄2

π2DR
, (2.101)

where the superscript (NF) stands for ‘no fluctuation’. If there are fluctuations, the chain can
disentangle from the tube when it has moved approximately the distance L̄−∆L̄, because the
chain ends are fluctuating rapidly over the distance ∆L̄. So we estimate the disentanglement
time as

τ(F)
d

≈ (L̄−∆L̄)2

π2DR
, (2.102)

where the superscript (F) stands for ‘fluctuation’. From these equations we can estimate:

τ(F)
d

≈ τ(NF)
d

(
1− X√

Z

)2

, (2.103)

where X is a certain numerical constant. A more precise variational calculation for the Rouse
model shows that X is larger than 1.47. [29] For this reason the effect of the contour length
fluctuation is significant even if Z is as large as 100.

The contour length fluctuations may serve to explain the discrepancy between the ob-
served scaling behavior of the viscosity, η ∝ N3.4, and the (pure) reptation prediction, η ∝ N3.
As long as Z is not extremely large the disentanglement times, and therefore the viscosities,
will be underestimated compared with the pure reptation predictions. This cross-over region
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is very large and in this region an apparent exponent for the scaling of the viscosity is ob-
served, which is larger than 3. It should be noted that for some time it was not clear why the
self-diffusion coefficient could scale according to the pure reptation result, D ∝ N−2, while
at the same time the viscosity and typical relaxation times felt the effects of contour length
fluctuations. However, recent reinvestigation of available experimental diffusion coefficient
data suggests that an exponent smaller than -2 can be observed for D as well, consistent with
the viscosity scaling. [72]

2.4.2 Tube reorganization

Another limitation of the pure reptation picture is the assumption that the tube is fixed in the
material and that conformational changes occur only at the tube ends. In reality, all polymer
move and the tube of polymer A is not only renewed by reptation of A but also by “constraint
release”, as a result of the motion of other polymers. This effect can be modeled by double
reptation, an idea introduced by des Cloizeaux, [19] in which an entanglement situated at
the junction of two polymers A and B can be released by reptation of either A or B. A more
detailed treatment of the double reptation model is outside the scope of the thesis, but we
mention that all typical relaxation times decrease in comparison with pure reptation, and that
additional relaxations occur in the shear stress relaxation modulus.

Tube reorganization effects, such as the constraint release, are especially important for
polymers with a broad molecular weight distribution, because the presence of short chains
speeds up relaxation of longer ones, and vice versa. In the next chapters we will only consider
monodisperse polymer melts, in which case most difficulties of the pure reptation theory can
be resolved by including the contour length fluctuations.
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3
United atom simulations of
zero-shear stress relaxation
and long time dynamics of
C120H242: A test of Rouse theory

Results of united atom molecular dynamics simulations of a n-C120H242 melt at
450 K are presented. It is shown that the results of mean square displacement,
dynamic structure factor, end-to-end vector autocorrelation and shear relaxation
modulus can consistently be described by the Rouse model with a single set of
fit parameters, provided the length scales involved are larger than the statistical
segment length b ≈ 1.2 nm. On smaller length scales the stiffness of the chain
becomes prominent, and the results deviate increasingly from the Rouse predic-
tions. The shear relaxation modulus G(t) is determined from the stress autocor-
relation function from both atomic and molecular points of view. The integrals∫

G(t)dt are found to be identical after 1 ps and a Rouse description is shown to
coincide for time scales larger than 0.4 ns. Compared to experimental values, the
measured diffusion coefficient is overestimated by 63% and the viscosity is un-
derestimated by 38%, consistent with molecular dynamics simulations of small
molecules.∗

3.1 Introduction

A melt of polyethylene (PE) can be viewed as a prototype of a large spectrum of different
polymer species, which all have the common feature that they are long and linear. Both its
simple chemical structure and its technological relevance have made PE the favorite sub-
ject of modeling and simulation efforts on computers. However, the level of sophistication
and atomic detail is always limited by the computational cost which can become quite enor-
mous because of the large time and length scales involved in dynamic properties of polymers.
For instance, atomic simulations of melts of very long (thousands of monomers) chains are
still out of reach of current-day computer power. Coarse grained models have been applied
to overcome this problem, and some are quite successful in reproducing experimentally ob-
served scaling laws of polymer melt properties, such as the diffusion coefficient and viscosity.
However, quantitative agreement with experiment is usually better when atomic simulations

∗ The work described in this chapter previously appeared in J. Chem. Phys. 114(19), 8685 (2001). [96]
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are applied. Therefore, the results of atomic simulations are important to check the validity
of coarse grained models and to calculate the parameters occurring in these models.

In this chapter we report diffusion, dynamic structure factor, zero-shear relaxation mod-
ulus, and viscosity results of atomic molecular dynamics (MD) simulations of a melt of n-
C120H242 chains. Several other studies have been reported on simulations of melts of poly-
mers of comparable size. [14, 51, 52, 82–85, 100, 101] They all suggest that individual prop-
erties of these melts can well be described by the Rouse model. [118] In this chapter we will
test whether the Rouse model can be used to predict the time correlation functions of a com-
prehensive set of physical processes by using one single set of parameters. At the same time
our results provide a benchmark for the coarse grained modelling of C120H242 in Chapter 4.

Paul and co-workers have performed molecular dynamics simulations of a melt of n-
C100H202 chains. [100, 101] They found that translational and rotational diffusion of the
chains can consistently be described by the Rouse model, but that systematic deviations show
up in the internal dynamics of the chains. Also, subdiffusive behavior was observed in the
chain dynamics, not predicted by the Rouse model. Similar results were found by Harman-
daris et al. for chains in polydisperse blends. [51] Mondello and co-workers investigated
a number of chain lengths between C10 and C66. [82, 83] By use of the Green-Kubo (GK)
relation they were able to calculate the zero-shear viscosity η0 for chains up to C16 by inte-
grating the zero-shear stress relaxation curves obtained from equilibrium molecular dynamics
simulations (EMD). They were not able to determine the viscosity by this method for chains
longer than C16. The reason for this, as was already shown by Cui and co-workers for the
case of liquid decane, [22] is that the integration time must be at least as long as the longest
relaxation time, which increases enormously with chain length. A more direct method to
estimate the viscosity is provided by the nonequilibrium molecular dynamics (NEMD) tech-
nique in which a shear flow is imposed on the system. By measuring relevant components
of the stress tensor, the viscosity may be determined as a function of shear rate. Using this
method, Mondello et al. showed that η0 of medium long chains may be estimated from the
longest relaxation time measured in EMD simulations by invoking the Rouse model. [82,83]
They found that the estimates are in good agreement with extrapolated NEMD results (within
20%). Moore et al. have performed NEMD simulations of a C100 melt (close to our C120) at
various shear rates. [84] They observed substantial shear thinning at shear rates larger than
the inverse rotational diffusion time. Unfortunately, they were unable to observe a Newtonian
plateau and experienced problems in extrapolating to zero shear. This is common to NEMD
simulations in which large shear rates are needed to obtain significant results.

The above results seem to indicate that many properties of medium long chains may well
be described by invoking the Rouse model. This is quite remarkable since the Rouse model
assumes that the surrounding chains merely constitute a stochastic background to a chain of
harmonically bound beads without excluded volume, and thus is not a very realistic model.
It is therefore not at all obvious that a chain which behaves Rouse-like with respect to one
property should also behave Rouse-like with respect to another property. It is our aim in this
chapter to investigate whether one set of Rouse parameters exists which describes all dynamic
properties of a C120 melt. In particular we want to include the full zero-shear stress relaxation
modulus among the data to be described, and not just the time integrated modulus, i.e. η0.

After we completed this work, Harmandaris et al. published a study which is quite similar
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in spirit. [52] Using NEMD simulations, and EMD simulations in the case of a C24 melt,
they showed that all dynamic processes of C24 and C78 melts, including shear relaxation
processes up to 3 ns, may well be described by the Rouse model. In this chapter we will
supply additional evidence, and show that also a C120 melt may be described by the Rouse
model, at least for processes lasting up to 1 ns. Since all our calculations will be based on
EMD simulations, the linear response regime will be guaranteed.

This chapter is organized as follows. In Sec. 3.2 we summarize the simulation model and
the methodology used to obtain a well-equilibrated melt. The method of calculation of the
various correlation functions and transport properties is summarized in Sec. 3.3. The results
are presented and discussed in Sec. 3.4. We summarize our conclusions in Sec. 3.5.

3.2 Simulation model and methodology

MD simulations were performed on four independent boxes of amorphous PE using the GRO-
MOS package. [9] Each box consisted of 12 chains of 120 monomer units [-CH2-], a system
small enough to make calculations computationally feasible, yet large enough to avoid sig-
nificant interactions of a chain with its periodic images. Moreover, the CH2 and CH3 groups
are modeled as united atoms (UA) in order to reduce the number of atoms in the actual sim-
ulation. Studies by Paul and co-workers have shown the ability of UA models to yield the
same dynamic results as more expensive explicit atom models. [100,102] The simulated sys-
tems were all subject to cubic periodic boundary conditions. Bond vibrations and bond angle
vibrations were treated by harmonic potentials

V (b) =
1
2

kb

(
b−b0

)2
(3.1)

for all bonds, and

V (θ) =
1
2

kθ
(
θ −θ0

)2
(3.2)

for all bond angles, where b0 and θ0 are the equilibrium bond length and angle. The force
constants for bond and bond angle vibrations are kb and kθ , respectively. The dihedral rota-
tions were described with the rotational potential of Ryckaert and Bellemans, [119]

V (ϕ) =
5

∑
n=0

cn cosn (ϕ) . (3.3)

The intermolecular interactions and the interactions between atoms separated by four or more
atoms in the same molecule were described by Lennard-Jones potentials

V (r) = 4ε
[
(σ/r)12 − (σ/r)6

]
. (3.4)

Parameters are listed in Table 3.1. We used a 1.15 nm cutoff for the Lennard-Jones interac-
tions. The equations of motion were solved using the leap-frog algorithm with a conservative
time step of 1 fs. Simulations of the NV T ensemble were performed using a weak coupling
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Parameter Value Units

kb (bond) 3.3475 105 kJ mol−1 nm−2

b0 0.153 nm
kθ (bending) 519.6 kJ mol−1 rad−2

θ0 114.0 deg.
c0 (torsion) 9.2789 kJ mol−1

c1 12.156
c2 -13.120
c3 -3.0597
c4 26.24
c5 -31.495
ε (CH2) 0.3908 kJ mol−1

ε (CH3) 0.9480
σ (CH2) 0.3930 nm
σ (CH3) 0.3930

Table 3.1: Force field parameters. Torsion parameters taken from Ryckaert and Bellemans.
[119] Other parameters taken from Smit, Karaborni, and Siepmann. [128]

scheme to a temperature bath of 450 K with coupling constant of 0.1 ps. [10] The density
was set to 0.7614 g/cm3, close to the normal pressure density at 450 K. [106] The average
pressure from the simulation was p ≈ 54 atm.

For a correct sampling of the pressure tensor autocorrelation, it is important to have a
fully equilibrated melt in which there is no average stress present. This is far from trivial
for complex fluids like polyethylene. A number of ways have been suggested by different
authors. Forrest and Suter have time-coarse grained the atomic interactions to improve the
sampling efficiency. [45] Tschöp et al. suggested a spatial-coarse graining for polycarbon-
ates, after which the chemical details are reintroduced into the coarse grained chains. [137]
Quite successful in obtaining a well-equilibrated melt is the end-bridging Monte Carlo algo-
rithm, as suggested by Pant and Theodorou, which however yields polydisperse melts because
of the connectivity-altering moves. [51, 99] Van der Vegt et al. have investigated the influ-
ence of three different ways of generating initial configurations on the solubilities of small
molecules in amorphous polymer melts. [138] In one of the methods a dilute system is slowly
compressed, during which process only the repulsive parts of the nonbonded Lennard-Jones
potentials are taken into account. The configurations in this work have been prepared this
way. After reintroduction of the full potential, the melt was equilibrated at the final density
for 10 ns. The average stress was measured during several simulations of one nanosecond
each and found to be small enough to have no influence on the stress-stress correlation func-
tions described in Sec. 3.4.
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The production time was 35 ns, the viscosity measurements were done in a subsequent
10 ns run to ensure maximum relaxed systems.

3.3 Calculation of correlation functions and transport
properties

We have measured three time-dependent mean square displacements gat (t), gbl (t), gcm (t),
which are defined as follows:

gat (t) =
1
n

n

∑
i=1

〈
[ri (t)− ri (0)]2

〉
, (3.5)

gbl (t) =
1

n/20

n/20

∑
j=1

〈[
rbl

j (t)− rbl
j (0)

]2
〉

, (3.6)

gcm (t) =
〈
[rcm (t)− rcm (0)]2

〉
, (3.7)

where ri is the position of the ith carbon atom, rbl
j is the position of the jth “blob,” as we will

explain next, and rcm is the center of mass of the chain. In Chapter 4 we will present mean
square displacement results of a coarse grained model of polyethylene, in which the smallest
particles are blobs. Each blob is supposed to mimic the behavior of the center of mass of a
collection of 20 successive carbon atoms. To validate this coarse grained model, we measure
gbl in the current atomic simulation. The diffusion coefficient is calculated from the mean
square displacement by

D = lim
t→∞

gcm (t)
6t

. (3.8)

The coherent dynamic structure factor of a single chain can be measured by means of
neutron spin echo spectroscopy. It is defined as

S (q, t) =
1
n

n

∑
i=1

n

∑
j=1

〈
exp
{

iq ·
[
ri (t)− r j (0)

]}〉
, (3.9)

where the two summations run over the (united) atoms of one chain.
The atomic (molecular) stress tensor is defined as

σσσ = − 1
V

[
n

∑
i=1

mivivi +∑
i> j

(
ri − r j

)
Fi j

]
, (3.10)

where v is the atomic (molecular) velocity, r is the atomic (molecular center of mass) position,
and Fi j is the force exerted on atom (molecular center of mass) i by atom (molecule) j. The
molecular stress tensor contains an anti-symmetric part, because the total force on a molecule
exerted by another molecule is not directed along the line of centers of the molecules, produc-
ing a torque on the molecules. [92] For calculating the shear viscosity we need the symmetric
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part. Daivis and Evans [23] have shown that the zero shear relaxation modulus is related to
the symmetrized traceless part P of the stress tensor σσσ by

G(t) =
V

10kBT
〈P(t) : P(0)〉 . (3.11)

The double contraction means in practice that we average over five independent contribu-
tions: Pxy, Pxz, Pyz, 1

2 (Pxx −Pyy), and 1
2 (Pxx −Pzz) [we get no additional information from

1
2 (Pyy −Pzz) since P is traceless]. The viscosity is given by the infinite time integral of Eq.
(3.11). It has been proved by Allen that viscosities calculated from the atomic and molecu-
lar approach are equal. [4] Several simulation studies have shown this to be correct. [22, 82]
The difference between the viscosity calculated from the molecular tensor and that from the
atomic tensor is found to converge to zero much faster than the longest relaxation time of the
molecule. This was confirmed in test runs of our system in which we calculated the shear
relaxation modulus from both atomic and molecular stress tensors. However, the behavior of
the atomic stress autocorrelation is dominated by the strong oscillatory behavior due to the
bond stretching vibrations. Thus, for practical purposes, the molecular tensor formalism is
more efficient since it allows the use of a relatively large sampling time interval. We have
chosen to measure the molecular pressure tensor every 50 fs. To make certain that we perform
an accurate integration of the data, we have also calculated the integral with a 5 fs interval for
the shorter time scales. The two integrals were found to be identical.

3.4 Results and discussion

In this section we will analyze the large time dynamics of the PE melt. We will explore the
Rouse model and its boundaries of applicability to real PE chains.

3.4.1 Mean square displacement

In Fig. 3.1 we present the time-dependent mean square displacement results from the simu-
lations. The results have been averaged over four independent boxes, allowing us to estimate
the errors. The shortest time behavior (t ≤ 1 ps) is ballistic and not shown in the graph. After
the ballistic regime, we observe two power law regimes g(t) ∝ tx for gat and gbl. The atomic
diffusion results reveal an exponent x = 0.65 up to 200 ps, after which an exponent x = 0.57
sets in. The initial value compares well with the results of molecular dynamics simulations
of C100H202 melts by Paul, Smith and Yoon. [100] They measured the mean square displace-
ments of central and end monomers of each chain separately, which on average yields an
exponent of x = 0.67. For the blob diffusion results we measure an exponent x = 0.75 up
to 400 ps, after which an exponent x = 0.65 sets in. These higher exponents should be ex-
pected, since in going to the blob level we average over some of the atomic movement (in
the ultimate limit of a chain being represented by one blob, gbl and gcm would be the same).
For both atomic and blob mean square displacements we expect free diffusion at larger time
scales. The chain center of mass diffusion gcm does indeed display free diffusive behavior
after t = 4 ns. Before this time subdiffusive behavior (x = 0.80) is observed. The subdiffusive
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Figure 3.1: Mean square displacement of the
atom (circles), blob (squares) and center of
mass (diamonds) positions as a function of
time on a double logarithmic scale. The
numbers are the estimated power-law expo-
nents x. The dashed lines indicate the tran-
sition times between the different power-law
regimes.
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Figure 3.2: Mean square displacement of
the atom (circles) and center of mass (dia-
monds) positions. The lines are fits to the
Rouse model. The dotted line is for an in-
finite Rouse chain (N → ∞, τ1 = 6.5 ns), the
dashed line for a finite Rouse chain, with the
approximation τk ∝ 1/k2 (N = 20, τ1 = 7.0
ns), and the dot-dashed line for a finite Rouse
chain with the exact expression for τk (N =
14, τ1 = 6.5 ns), see Eq. (2.22). The statistical
segment length b2 = 1.49 nm is indicated by
the long dashed horizontal line. Above this
line the Rouse predictions are correct.

exponent compares well to both simulation [100] and neutron spin echo spectroscopy [101]
results of a C100H202 melt (x = 0.83).

Now we want to investigate how closely the observed mean square displacement results
resemble Rouse behavior. In the Rouse model, segmental mean square displacements show
a subdiffusive regime gat (t) ∝ t1/2 before crossing over to free diffusion. However, this is
only true in the limit of N going to infinity. For finite N there is a transition from an early
t1 regime to a sublinear exponent. This transition occurs at the fastest relaxation time in the
Rouse chain, which is τN−1 in Eq. (2.22). In Fig. 3.2 we present the result of fitting the
three independent parameters of the Rouse model to the observed atomic and chain diffusion
data. The three fit parameters are the diffusion coefficient of the chain D, the Rouse time
τ1, and the number of statistical segments N. In the Rouse model, the center of mass of
a chain will always diffuse freely, so a fit to the long time behavior of gcm will uniquely
determine D. We find a self-diffusion coefficient of D = (1.09±0.09)×10−6 cm2/s, which
is in excellent agreement with the observations of Harmandaris and co-workers who found
D = (1.16±0.2)×10−6 cm2/s for a C117 chain, and D = (1.0±0.1)×10−6 cm2/s for a C128
chain at the same temperature and approximately the same density as our simulation. [51]
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Pearson et al. [106] have measured self-diffusion coefficients by means of field gradient NMR
at 450 K experimentally for a large range of molecular weights, although not at the weight of
C120 chains. An interpolation of their data yields Dexp ≈ 0.67×10−6 cm2/s. The discrepancy
is not specific to our united atom model. It is well known that diffusion coefficients from
MD simulations tend to overestimate the self-diffusion coefficient, especially at high packing
fractions. For a systematic study, the reader is referred to the work of Dysthe and co-workers.
[31]

From the diffusion coefficient, we can calculate the segmental friction coefficient ζ . How-
ever, ζ still depends on the size of the statistical segment. One can easily show this by writing
ζ = mξ , in which m is the mass of the statistical segment, and ξ is the friction “frequency.”
If we apply this to Eq. (2.20) we find D = kBT/(Nmξ ) = RT/(Mwξ ), where R is the uni-
versal gas constant and Mw is the molecular weight of the chain. Since within the Rouse
model the diffusion coefficient of a given chain must not depend on how many segments we
choose to divide it in, ξ must be a property of the chain independent of our choice of sta-
tistical segment length (but still dependent on other factors, such as temperature). We find
ξ = (19.0±1.6) ps−1 for the friction frequency. Harmandaris et al. have calculated the
friction coefficient of a CH2 monomer, which is then shown to be independent of the chain
length for chains longer than C70. If we calculate the monomeric friction coefficient we find
ζ = (4.45±0.37)× 10−13 kg/s, in accordance with their results. [51] However, we remind
the reader that the number of segments N in the Rouse model should not be set equal to the
number of monomers n in the chain, since one monomer does not make a statistical segment,
as we will show later on.

Now we consider the atomic mean square displacements, shown in Fig. 3.2. The value of
the sublinear exponent in the atomic mean square displacement depends on both the Rouse
time τ1 and the number of statistical segments N. It was found that N has little influence
on the second regime of gat (t) (for not too small N), so we used the regime from 1 to 20
ns to fit the Rouse time. Finally we varied N to obtain the best fit for times below 1 ns.
Applying the exact expression for the relaxation time spectrum, Eq. (2.22), we obtained
τ1 = (6.5±0.3) ns and N = 14±2. Applying the approximation τk ∝ 1/k2 [Eq. (2.24)], we
obtained slightly different parameters, τ1 = (7.0±0.3) ns and N = 20±3. Since N is found
to be relatively low, this approximation fails at short times, so the first set of parameters is the
more correct one. For comparison we have also included the results of a fit with an infinite
Rouse chain (N → ∞), in which case τ1 = 6.5 ns and a t1/2 regime occurs. Clearly, the
deviation of the measured exponent x = 0.57 from the ideal value of 0.5 is due to the small
number of statistical segments. From this study we can conclude that a statistical segment
of polyethylene at 450 K is comprised of about 120/14 = 8.6 monomers. The size of this
segment, b2, is given by the combination of Eqs. (2.20) and (2.22),

b2 = 12NDτ1 sin2
( π

2N

)
(3.12)

which yields b2 = 1.49 nm2. (If we would have used N = 20 and τ1 = 7.0 ns we would have
found b2 = 1.13 nm2 for a segment comprised of 6 monomers.) It is apparent from Fig. 3.2
that it is this length (rather than a characteristic time) which determines when Rouse theory
sets in. When both gat and gcm have moved more than b2, the Rouse theory predictions co-
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Figure 3.3: Dynamic structure factor for
seven different magnitudes of the wave vec-
tor. The symbols are the simulation data.
The full curves are the Rouse fits, Eq.
(2.37).
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incide with the molecular dynamics results. Consequently, the atomic results coincide much
earlier than the chain center of mass results (after 0.4 and 4 ns respectively). Below these
limits the Rouse model fails because of the neglect of molecular stiffness, as was pointed out
by Harnau and co-workers. [54, 55] Other factors may be important as well. For instance,
Richter et al. suggested that an extra (internal) friction term may be necessary to explain
experimental results. [112] This has however been questioned by Harnau et al. [53, 113] In
this chapter we will not elaborate on this matter. Whenever ’chain stiffness’ is mentioned,
the possibility of these other effects should be kept in mind as well.

3.4.2 Dynamic structure factor

The dynamic structure factor is experimentally the best accessible quantity to check the va-
lidity of the Rouse model. The neutron spin echo spectroscopy experiments described in
Ref. [101] already formed a critical test of the Rouse model, and our conclusions correspond
with those of the authors. In Fig. 3.3 we present the normalized dynamic structure factors for
seven wave vectors ranging from q = 0.55 nm−1 to q = 3.0 nm−1 together with the Rouse
predictions, Eq. (2.37).

The fit parameters were determined as follows: for q � 2π/Re, where Re is the end-
to-end vector, the wave vector is so small that it only probes the overall diffusion of the
chain. Thus we have used the first wave vector to determine D, independent of the mean
square displacement measurements. We obtained D = (1.15±0.08)×10−6 cm2/s, which is
in prefect agreement with the previous results. The Rouse time τ1 and the number of segments
N are of importance for the larger wave vectors. A combined fit yields τ1 = (6.5±0.5)
ns and N = 15± 5. The large uncertainty in N stems from the fact that the smallest wave
vectors are relatively insensitive to N, while the larger wave vectors cannot be described
correctly by any N whatsoever. For q ≥ 1.4 nm−1 the Rouse curves decay too fast compared
with the simulation data, leading to underestimated structure factors for large times (but an
overestimate for times lower than ∼ 50 ps). This value of q corresponds to a half-wavelength
of π/q = 2.24 nm, which is in the same order of magnitude as the statistical segment length
b. Again, we conclude that the Rouse model is capable of correctly describing the behavior
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Figure 3.4: Orientational autocorrelation
function of the end-to-end vector. The cir-
cles are the simulation data, the full curve is
the Rouse fit, Eq. (2.30).

of a polymer chain, but only on length scales larger than the statistical segment length. Below
this length scale the stiffness of the chain becomes important, leading to a slower decay of
the dynamic structure factor.

3.4.3 End-to-end vector

The end-to-end vector measures the position of the last segment with respect to the first
segment of a chain, Re = rN −r1. For a Gaussian chain, such as the Rouse chain, the average
squared magnitude of the end-to-end vector is given by Eq. (2.2), which yields 20.9 nm2 if
we use N = 14 and b2 = 1.49 nm2, and 22.6 nm2 if we use N = 20 and b2 = 1.13 nm2. In the
simulations we measured

〈
R2

e

〉
= (23.8±4.0) nm2, which is in rather good agreement with

the Rouse prediction if we take into account that the end-to-end vector is measured from the
first to the 120th carbon atom in the atomic case, and between the centers of the first and last
statistical segments in case of a Rouse chain.

The dynamic quantity we are interested in is the orientational autocorrelation function for
the end-to-end vector 〈Re (t) ·Re (0)〉/〈R2

e

〉
. It measures the rate at which the chain becomes

uncorrelated with itself by means of rotational diffusion. Fig. 3.4 presents the decay of
the normalized end-to-end vector autocorrelation function from the simulations including a
fit with the Rouse prediction of Eq. (2.30). One can vary both the number of statistical
segments N and the Rouse time τ1 to obtain a best fit. We have used the limiting single
exponential behavior to determine the Rouse time and adjusted N to get the best fit for short
time behavior. This procedure yields τ1 = (6.0±0.5) ns and N = 13±3, in agreement with
the fit parameters obtained from the mean square displacement data. The fit can be made
fairly accurate because the end-to-end vector is a property of the entire chain and much larger
than the statistical segment length b.

3.4.4 Shear relaxation modulus and viscosity

The shear relaxation modulus G(t) is calculated from the autocorrelation of the stress tensor,
Eq. (3.11). As explained in Sec. 3.3 the stress tensor can be determined from an atomic or a
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Figure 3.5: Comparison of the short-time
behavior of the shear relaxation modu-
lus determined from the atomic (line) and
molecular (dotted line) stress tensor. The
inset shows the integral up to time t. Af-
ter 1 ps the atomic and molecular integrals
become identical.
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molecular point of view. In Fig. 3.5 both results are presented for a sampling interval of 5 fs.
The atomic shear relaxation modulus shows strong oscillatory behavior due to fast vibrations
of the bonds in the chain, while the molecular shear relaxation modulus is a much smoother
function, with a minimum at 0.21 ps. The inset of Fig. 3.5 shows the integrals up to time t,

η (t) =
∫ t

0
G(t)dt, (3.13)

for both shear relaxation moduli. [The shear relaxation modulus itself is given by the slope
of η(t).] It is seen that the atomic and molecular integrals become identical for t larger than
1 ps, in accordance with the findings of other authors. [22, 82] The limit of Eq. (3.13) for
t going to infinity gives the viscosity of the polyethylene melt. The computational demands
for these calculations are very large because the stress tensor is a collective property of the
system, yielding only one value per time frame (in practice we can use five, as explained in
Sec. 3.3). This means that very long runs are needed to obtain enough statistical accuracy.
Because of the larger possible integration time step (50 fs), the molecular stress tensor was
used to determine η (t) for large time scales.

The rate of convergence of the integral of the shear relaxation modulus depends on the
relaxation time of the chain. In principle one should integrate up to, say, 2τ1 to reach the
plateau value of the integral. This is however quite impossible, so instead of varying the
parameters of the Rouse model (N and τ1) to fit the entire curve, we will use the parameters
found before to compare the Rouse predicted integral with the measured integral η (t) up to
t = 1 ns. The measured result, shown in Fig. 3.6, is an average of the results of the four
independent simulation boxes, each yielding five independent contributions. We can make
a conservative estimate of the error in the average value at each time by treating these 20
contributions at each time as independent data. This way we find estimated errors of 6% at
t = 0.1 ns up to 17% at t = 1 ns. Because the statistical uncertainties are relatively large, we
must be careful with our conclusions.

Before testing the Rouse predictions, let us compare our EMD result with the NEMD
results of Moore et al. on C100 chains. [85] They measured transient shear stresses by ap-
plying sudden constant shear rates to equilibrated systems. At the high shear rates applied
by these authors, the stresses exhibit temporary overshoots above the steady-state values, in
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Figure 3.6: The long time behavior of the
integral of the shear relaxation modulus de-
termined from the molecular stress tensor
(line). The dashed line is the Rouse predic-
tion, Eq. (2.60), for N = 13 and τ1 = 6.0 ns.
The inset shows the difference ∆η (t) [see
Eq. (3.14)] between measured and Rouse
integrals for different sets of parameters.
From top to bottom: (N = 13,τ1 = 6.0 ns),
(N = 14,τ1 = 6.5 ns), and (N = 20,τ1 = 7.0
ns). For the first two sets, the difference be-
comes constant after approximately 0.4 ns
(dashed lines). From this graph we are un-
able to determine which of the two sets of
parameters provides the best fit.

partial agreement with the Doi-Edwards theory of entangled systems. [30] This seems to in-
dicate that under some conditions aspects of the reptation picture may be applicable, even
for chains which are not supposed to be entangled. Notice that our Fig. 3.6 represents the
zero-shear limit of their Fig. 1. In this sense the results of Moore et al. and our results are
complementary.

Let us now compare the results with the Rouse integral, Eq. (2.60). The density of Rouse
chains is set equal to the density of chains in the MD system. The result is shown in Fig. 3.6
for N = 13 and τ1 = 6.0 ns. It is immediately apparent that the Rouse curve differs from the
measured curve. This should be expected because the initial relaxation modulus G(t) of the
polyethylene system does not behave Rouse-like at all, as can be seen in Fig. 3.5. However,
the Rouse curve is observed to run parallel with the measured curve after approximately 0.4
ns. This means that the zero-shear relaxation modulus G(t) is perfectly described by the
Rouse model in this time regime. Note that 0.4 ns is the time at which the atoms have moved
on average over one statistical segment length b. That the two curves really are parallel is
best revealed by plotting the difference against time,

∆η (t) = η (t)−ηR (t) (3.14)

and observing that ∆η becomes constant after a certain time. The inset of Fig. 3.6 shows the
difference for the three sets of Rouse parameters obtained so far, N = 13 and τ1 = 6.0 ns,
N = 14 and τ1 = 6.5 ns, and N = 20 and τ1 = 7.0 ns. Only the first two sets give a constant
∆η within the measured time span, with a limiting value of ∆η∞ = −0.39 cP for N = 13 and
τ1 = 6.0 ns, and ∆η∞ = −0.58 cP for N = 14 and τ1 = 6.5 ns. Because of the uncertainty in
the data, we are unable to determine which of the two sets of Rouse parameters provides the
best fit to the data. In the last set, the Rouse parameters are clearly over-estimated, resulting
in an ever decreasing difference curve. If the zero-shear relaxation modulus can perfectly be
described by the Rouse model after 1 ns as well, we may estimate the viscosity as

η = ηR +∆η∞ (3.15)
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where ηR is the limit of Eq. (2.60) for t to infinity (8.25 and 8.96 cP respectively for the
first two sets). This yields an estimate for the viscosity of respectively η = 7.86 cP (first
set) and η = 8.38 cP (second set) for our melt of C120H242 chains at 450 K. Pearson et
al. [106] have measured the viscosity of n-alkanes and PE as a function of molecular weight
at 450 K, although not at the weight of C120 chains. An interpolation of their data yields
ηexp = 13.5 cP. As with other MD simulations at high packing fractions the viscosity is
somewhat underestimated, [31] in our case by 38% (for the second set). The important result
is that we have shown that the shear relaxation modulus G(t) behaves exactly like that of
a Rouse chain on time scales between approximately 0.4 and 1.0 ns. A correction ∆η∞
accounts for the fact that initially a real chain does not behave Rouse-like, but it is relatively
small for long chains, in our case only 5 to 6%. Therefore the much applied practice to
estimate the viscosity from the longest relaxation time τ1, Eq. (2.61), seems to be justified.
We would however like to place a word of caution: one may not disregard the possibility
that G(t) does not behave Rouse-like at times larger than 1 ns. At larger times, contributions
from the interactions between different chains may be important, with relaxation times well
exceeding the longest intrachain (configurational) relaxation times. A first indication that
such processes are important may be found in the transient stress calculations of Moore et
al. which suggest that entanglements may be important even in the case of C100 chains. [85]
Additional evidence for this hypothesis will be presented in Chapter 4 in which we will coarse
grain the melt investigated in this chapter in order to reach larger time regimes. We will show
that on the largest time scales the stress in the system relaxes more slowly than in the case of
a Rouse chain, leading to an increased viscosity as compared to the Rouse model.

3.5 Conclusions

We have performed MD simulations of a polyethylene melt to investigate the validity of the
Rouse model predictions for a comphensive set of correlation functions: the mean square
displacement, dynamic structure factor, end-to-end vector autocorrelation and zero-shear re-
laxation modulus. It was found that the chains do indeed behave like Rouse theory predicts,
but only on length scales larger than the segment length b. Further, it was found that the
different quantities consistently yielded the same set of fit parameters N, D, and τ1. The de-
viations between the Rouse model calculations and the experimental and simulation data of
short time mean square displacements and large q dynamic structure factors were shown by
Harnau and co-workers to be due to the neglect of molecular stiffness [54,55] which becomes
prominent on length scales smaller than the statistical segment length. Other effects, such as
an extra (internal) friction, may also be of importance on this length scale, as was pointed out
by Richter and co-workers. [53, 112, 113]

An important part of this work constituted the calculation of the zero-shear relaxation
modulus and viscosity of a melt of chains which is supposed to be described by Rouse dy-
namics. We have found that a Rouse description of the shear relaxation modulus exactly
coincides with the simulation results for time scales between 0.4 and 1.0 ns. This allowed us
to extrapolate the integral using Rouse theory, yielding a viscosity of 8.38 cP, underestimating
the experimental value by 38%. The correction due to initial differences between Rouse and
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simulated shear relaxation modulus is shown to be relatively small. We do not rule out the
possibility that at times larger than 1 ns intermolecular contributions to the stress relaxation
modulus, caused by ”entanglements”, survive, which will substantially enlarge the calculated
viscosity.
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4
Uncrossability constraints in
mesoscopic polymer melt
simulations: Non-Rouse
behavior of C120H242

An important feature of a melt of long polymers is that the bonds of the chains
cannot cross each other. This seemingly simple fact has a great impact on the
long time dynamics and rheology of the material. In this chapter we will describe
an algorithm that explicitly detects and prevents bond crossings in mesoscopic
simulations of polymers. The central idea is to view the bonds as slippery elas-
tic bands which can get entangled. The method is applied to a simulation of
a coarse-grained melt of C120H242, in which each chain is represented by six
blobs. The long time dynamics and zero-shear rate rheology are investigated and
the relative importance of uncrossability and chain stiffness is established. As
a result of the uncrossability of the chains we observe a subdiffusive exponent
in the mean square displacement of the chains, a stretching of the exponential
decay of the Rouse mode relaxations, an increase of relaxation times associated
with large scales, and a slowing down of the relaxation of the dynamic struc-
ture factor. These results are in agreement with the results from the microscopic
molecular dynamics simulations in Chapter 3. Finally an increased viscosity
as compared to the Rouse model is observed, which is is attributed to slowly
decaying interchain stress components.∗

4.1 Introduction

Experimentalists and theoriticians are fascinated by the peculiar dynamics of polymer melts.
Rheological experiments reveal a non-trivial molecular weight dependence of the viscosity
and the same applies to the diffusion coefficient, which can be measured by field gradient
NMR or forward recoil spectrometry techniques. [39, 41, 49, 106] Also, neutron spin echo
spectroscopy measurements have revealed a broad spectrum of characteristic times which are
associated with relaxations at different length scales. [101,112,120] The task of theoriticians
is to explain these results in terms of the simplest possible models which still embody the
essential features of polymers, like for example that they are long and flexible and that their

∗ The work described in this chapter previously appeared in J. Chem. Phys. 115(6), 2846 (2001). [97]
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covalent bonds cannot be cut or cross. The use of such simple models containing only essen-
tial features is justified by experimental observations of universal scaling behavior of (linear)
polymers of different chemical structure. This suggests that rheological properties and mo-
tions of large parts of the chain may not depend on the details of the polymers except for
some species-dependent ’effective’ parameters, such as friction coefficients, and structural
information may only be needed on the scale of groups of monomers. Two of the best-known
models in this category are the Rouse model [118] and the reptation model. [30] The former is
supposed to describe the dynamics of relatively low-weight linear polymers. It assumes that
the surrounding chains merely constitute a stochastic background to a chain of harmonically
bound beads. The latter describes the dynamics of very long chains which are forced to move
anisotropically inside effective tubes formed by entanglements with surrounding chains. Still,
despite the large amount of literature on these models, many problems remain unsolved. In
particular, there is no general consensus of the concept of entanglement length [107] and even
the necessity to invoke reptation to explain the experimental results is not without debate (see
Ref. [73] for a review on this matter).

Despite their simplicity most polymer models require computer simulations to reveal their
macroscopic properties. In the successful model applied by Kremer and co-workers, groups
of monomers are represented as pure repulsive Lennard-Jones spheres and the bonded spheres
are connected by a finitely extensible non-linear elastic potential (FENE). [66, 107] Alterna-
tively, the polymer may be represented as a freely-jointed chain of hard spheres, [131] or as a
chain of ellipsoidal particles. [121,142] In these models, the interactions are chosen explicitly
such that bond crossings will be energetically unfavorable. Thus, an essential feature of the
polymer chain is incorporated automatically. The range of the repulsive forces in these mod-
els is necessarily of the order of the maximum separation of two bonded spheres, which sets
a severe limit to the number of monomers which may be represented by one sphere. Actually
one would like to have this number as large as possible, and start with detailed molecular dy-
namics simulations of relatively short polymer chains to determine effective interactions and
friction parameters of groups of monomers by averaging out uninteresting degrees of free-
dom. This so-called coarse-graining of polymers may be done in numerous ways. [1, 7, 137]
In this chapter a rather simple coarse-graining procedure is adopted, because interactions will
become soft in any case and we think that crucial for obtaining the right rheological properties
is not so much the interactions, but the fact that chains are not allowed to cross.1 Therefore
we will give full attention to explicitly obeying the uncrossability constraint.

Up to now, explicit uncrossability constraints have only been implemented for Monte
Carlo simulations on cubic and diamond lattices. [125, 126, 135] Simulations on lattices are
however typically performed at rather low densities in order to obtain a reasonable acceptance
rate of the attempted moves. [66] In order to be able to perform mesoscopic simulations at
high densities, we have implemented a routine which explicitly detects and prevents bond
crossings in a continuum simulation program called TWENTANGLEMENT (Twente University
entanglement). [95]

One can think of many ways to implement an uncrossability constraint. Our method is

1 In the extreme case, a polymer chain has been represented as a single soft ellipsoidal particle. In this case, of
course, all entanglement effects are neglected which results in unrealistic dynamics. [87]
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Figure 4.1: The creation of an ’entangle-
ment’: (a) two pairs of bonded blobs are
closing in on each other. (b) At a certain
moment their bonds wil touch. (c) An en-
tanglement is created at the crossing point
X, after which the bonds are viewed as slip-
pery elastic bands. The elasticity will slow
down the relative speed of the bonds.

based on considering the bonds as elastic bands between the bonded particles. As soon as
two of these elastic bands make contact, an ’entanglement’ is created which prevents the
elastic bands from crossing. This is depicted in Fig. 4.1. To take away any confusion:
in the algorithm ’entanglements’ are defined as the objects which prevent the crossing of
chains. Only a few of these are expected to be entanglements in the usual sense of long-
lasting obstacles, slowing down the chain movement. For instance, the C120H242 chain is
generally considered not to be entangled, yet many ’entanglements’ occur in the simulation.
For the implementation of the algorithm, the following considerations have been taken into
account: (i) the entanglement algorithm should be a simple generalization of the force routine,
yet capture the essence of what an entanglement is, i.e. (ii) an entanglement must prevent the
crossing of two bonds, (iii) an entanglement should be able to dynamically slide along the
backbone of the chain (i.e. not be a permanent crosslink), and (iv) an entanglement should be
able to disentangle if the topology of the chain demands so.

The purpose of this chapter is twofold. First, we will explain the assumptions and ap-
proximations made for the construction of the entanglement algorithm. Second, the influence
of the uncrossability constraint on the dynamic behavior of relatively short coarse-grained
polyethylene chains will be investigated. These results will be compared with the microscopic
simulations described in Chapter 3, with mesoscopic simulations without the uncrossability
constraint, and with results from the literature.

This chapter is organized as follows: in Sec. 4.2 we describe the coarse-grained simu-
lation model and give an introduction to the entanglement constraint. Details of the entan-
glement constraint are given in Sec. 4.3. This section is rather technical, so may be skipped
by the reader who is interested in the results only. Sec. 4.4 describes the application of the
entanglement constraint to the coarse-grained melt of polyethylene C120H242. The method
by which the initial box is prepared and the choice of parameters are explained. The results
of the simulations are presented and discussed in Sec. 4.5. We summarize the conclusions in
Sec. 4.6.

4.2 The simulation model

4.2.1 Coarse-grained interactions

Because the details of a polymer are largely unimportant for its large scale dynamics, the
chain will be described in terms of groups of monomers, which we call ’blobs’. The position

49



4. UNCROSSABILITY CONSTRAINTS IN MESOSCOPIC MELT SIMULATIONS

R of each blob is defined as the center of mass position of the λ monomers which together
constitute the blob:

R =
1
M

λ

∑
i=1

miri, (4.1)

where ri is the position and mi the mass of monomer i, and M is the total mass of the blob. The
complementary 3(λ −1) coordinates per blob of the microscopic system are treated as bath
variables, i.e. their effects are taken into account through random forces which perturb the
time evolution of the blob positions. A complete separation of time scales is assumed, such
that the random force correlations decay much faster than the blob momentum correlations.
In this approximation the random force correlations may be represented by delta functions
and the equations of motion are of the simplest Langevin type: [1]

M
d2Ri

dt2 = −∇iχ −ζ
dRi

dt2 +FR
i . (4.2)

where χ is the potential of mean force (PMF) of the blob system, and ζ is the blob friction
coefficient. The friction is chosen to be independent of the blob configuration; it is related to
the random force FR

i through the fluctuation dissipation theorem:〈
FR

i (t) ·FR
j (0)
〉

= 6kTζδi jδ (t) , (4.3)

where k is Boltzmann’s constant, and T the temperature.
The potential of mean force is defined as

χ (Rn) = −kT lnPn (Rn) . (4.4)

Here Pn is the n-blob distribution function which is determined from the microscopic system
by averaging over the fast variables. The occurrence of χ in the Langevin equation ensures
that the blob distributions in the coarse-grained and microscopic systems will be the same.
Unfortunately it is very hard to handle a 3n-dimensional distribution function, so approxi-
mations need to be made. We have made the rather crude assumption that the distribution
factorizes into independent non-bonded, bonded, and angular parts according to:

Pn (Rn) = ∏
i< j

Pnb
(

Ri, j

)
∏

i
Pb
(

Ri,i+1

)
∏

i
Pθ (θi) . (4.5)

Here Ri, j = Ri−R j, Ri, j =
∣∣∣Ri, j

∣∣∣, and θi is the angle between two consecutive bonds, cosθi =
(Ri,i−1 ·Ri,i+1)/(|Ri,i−1||Ri,i+1|). The potential is thus approximated as a sum of non-bonded,
bonded and angular energies:

χ (Rn) = ∑
i< j

ϕnb
(

Ri, j

)
+∑

i
ϕb
(

Ri,i+1

)
+∑

i
ϕθ (θi) . (4.6)

The first sum is over all non-bonded pairs, the second sum over all bonded blobs and the
third sum over all groups of three consecutive blobs. Although in reality the distributions
will not be completely independent and indirect correlations between two given blobs via the
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Figure 4.2: A snapshot from the molecular
dynamics simulation. In the coarse-grained
model, the center of mass of every 20 con-
secutive monomers will be represented by
one blob.

surrounding blobs are important, they have been neglected here since the focus of our work
lies with the entanglements.

To determine the distribution functions, molecular dynamics simulations of polyethylene
chains of 120 monomers per chain were performed at T = 450 K, as decribed in Chapter 3.
For the number of monomers per blob, λ , the following two considerations were taken into
account: (i) λ should be large enough to allow for a significant increase of the integration
timestep. For the more monomers together constitute a blob, the larger will be its mass and
the softer will be the interactions between the blobs, and consequently the more the timestep
can be increased. However, (ii) λ should not be so large that the size of the blobs exceeds the
typical diameter of the tube in the reptation picture, or in other words the entanglement length.
In that case it would be impossible for the model to display a tube of realistic proportions. A
suitable choice seemed to be λ = 20 CH2 units, which is still roughly one third of the smallest
entanglement length reported in the literature [15]. With this choice of λ each polyethylene
chain of 120 monomers was represented by 6 blobs, as shown in Fig. 4.2. The partial PMF’s
were calculated as minus kT times the logarithm of the measured distributions of blobs and
fitted with simple analytical functions, as shown in Fig. 4.3. The non-bonded blob interaction
was described by a single repulsive Gaussian pair potential:

ϕnb (R) = c0e−(R/b0)
2

. (4.7)

The bonded blob interaction was split into two parts, a repulsive term ϕ rep, described by two
Gaussians, and an attractive term ϕatt, described by a single power law:

ϕb (R) = ϕ rep (R)+ϕatt (R) , (4.8)

ϕ rep (R) = c1e−(R/b1)
2

+ c2e−(R/b2)
2

, (4.9)

ϕatt (R) = c3 (R)µ . (4.10)

The reason for splitting up the bonded blob interactions will become clear when we apply the
uncrossability constraint. The angular potential was described as a function of the cosine of
the angle:

ϕθ (θ) = c4 (1+ cosθ)ν . (4.11)

The fit parameters c0 to c4, b0 to b2, µ , and ν are listed in Table 4.1.
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Figure 4.3: Distribution functions and potentials of mean force. Using microscopic simula-
tions, the distribution functions between non-bonded (circles) and bonded (squares) centers
of mass of 20 monomer units have been determined [symbols in (a)]. Taking minus kT times
the logarithm, partial potentials of mean force are obtained [corresponding symbols in (c)],
which are then fitted with simple analytical functions [solid lines in (c), Eqs. (4.7) to (4.10)
in the text]. In the same way, the angular potential of mean force has been determined [sym-
bols in (b), symbols and solid line in (d), Eq. (4.11)]. Mesoscopic simulations with these
potentials and the uncrossability constraint yield the distributions given by the solid lines in
(a) and (b).
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Parameter Value Units

c0 (non-bonded) 5.557 kJ mol−1

b0 0.491 nm
c1 (bonded) 10.47 kJ mol−1

b1 0.261 nm
c2 3.498 kJ mol−1

b2 0.671 nm
c3 5.3 10−3 kJ mol−1 nm−µ

µ 10
c4 (angular) 3.011 kJ mol−1

ν 1.2

Table 4.1: Parameters for the potentials of mean force, obtained from fits of the distribution
functions, as explained in the text.

4.2.2 Entanglements

An important consequence of averaging out the bath variables is that the resulting bonded
and non-bonded interactions become softer and broaden their range. A comparison with
kT = 3.74 kJ/mol shows that it becomes likely that two bonds will cross. This is an unphysical
process, which will make the model lose all its dynamic properties characteristic for polymer
melts. For this reason we have developed an entanglement algorithm, which explicitly detects
and prevents bond crossings, and implemented it in a program called TWENTANGLEMENT.
[95] The detection of crossings between bonds is achieved by means of a simple geometric
argument, details of which will be given in the next section. Once an imminent bond crossing
is detected, an entanglement point X is defined at the crossing site, as in Fig. 4.1(b). As the
blobs continue to move, the entanglement point X shifts, such that it will push both bonds
back to their respective sides. This is accomplished by changing the attractive potential ϕatt

between bonded blobs by replacing the blob distance Ri,i+1 by the path length Li,i+1 from one
blob i to the next via the entanglement:

Li,i+1 =
∣∣Ri −X

∣∣+ ∣∣X−Ri+1

∣∣ , (4.12)

ϕatt
(

Li,i+1

)
= c3

(
Li,i+1

)µ
. (4.13)

The entanglement position X is fixed by requiring that the total attractive potential energy

of the entangled bonds ϕatt
(

Li,i+1

)
+ ϕatt

(
L j, j+1

)
is at its minimum. This is equivalent

to requiring equilibrium of forces at the entanglement. In a sense, the original bonds are
replaced by slippery elastic bands which go via the entanglements. The finite extensibility of
the bands prevents entangled chains from crossing each other. The expression for the path
length that is given here is only valid in case of just one entanglement between two pairs
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Figure 4.4: Definition of the pathlength
Li,i+1 between bonded blobs at Ri and Ri+1,
Eq. (4.14).

of bonded blobs. The algorithm allows for any number of entanglements between pairs of
bonded blobs. To this end the path length concept has been trivially modified. A detailed
description of this and other aspects of the entanglement algorithm will be given in the next
section.

The replacement of blob distances by path lengths in the bonded part of the potential en-
ergy of course changes the structural properties of the model. As shown in Fig. 4.3 however,
the mesoscopic distribution functions obtained by this method are hardly different from the
ones obtained from the microscopic simulation.

4.3 Detailed description of the entanglement algorithm

4.3.1 Overview

The entanglement algorithm described below can be placed in the force routine of any stan-
dard molecular or stochastic dynamics program. A typical update in such a program consists
of evaluating the forces that act on the particles, using these to calculate the accelerations of
the particles and subsequently updating the particle velocities and positions. The entangle-
ment algorithm in the force routine consists of the following three parts:
1. Given the new blob positions and the order of blobs and entanglements in the chains, move
the entanglements to their new positions and calculate the forces that act on the blobs.
2. Detect new entanglements and disentanglements caused by the movements of the blobs
and the entanglements.
3. If possible, let entanglements slip across blobs or each other (non-trivial moves).
The details of each of these parts will be described in the following subsections.

4.3.2 Moving entanglements

Suppose entanglements already exist. In the mesoscopic model, the entanglements have no
volume and are fully characterized by their positions Xk. As was already mentioned in the
previous section, the attractive potential ϕatt is redefined to be a function of the path length
Li,i+1. In case the bond runs from blob i, via p consecutive entanglements, to blob i+1 (see
Fig. 4.4) the path length is defined as:

Li,i+1 =
∣∣Ri −X1

∣∣+ ∣∣X1 −X2

∣∣+ . . .+
∣∣Xp −Ri+1

∣∣ . (4.14)

Since each blob represents a large collection of monomer units, the heavy backbone of the
mesoscopic chain will in general move very sluggishly. This is in contrast to an entanglement,
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which at the atomic level includes only a few monomer units. Consequently, the timescale
with which the entanglement position adjusts itself is much shorter than the timescale with
which the polymer backbone is moving. Effectively, on the coarse grained time scale, there
will be an equilibrium of forces at the entanglements. Such an equilibrium of forces in a
system with n blobs and p entanglements is achieved by the following minimization:

Φatt (Rn) = min
Xp ∑

i
ϕatt
(

Li,i+1 (Rn,Xp)
)

, (4.15)

i.e. the entanglement positions are determined by the requirement that the total attractive
energy be at its minimum (the blobs are kept at their respective positions). This minimum
energy is the contribution Φatt of the attractive part to the total potential energy Φ of the
system. The other contributions, Eqs. (4.7), (4.9), and (4.11), are calculated in the usual way
from the blob positions, and together constitute the remainder Φr of the potential energy, i.e.
Φ = Φatt + Φr. At each time step the dynamics program will need the forces on the blobs
in order to update their velocities and positions. The minimization in Eq. (4.15) does not
complicate the evaluation of the force on a blob i since

(
∂Φatt/∂Xk

)
= 0 at the minimum:

Fi = −∂Φatt

∂Ri
−∑

k

(
∂Φatt

∂Xk

)
·
(

∂Xk

∂Ri

)
− ∂Φr

∂Ri

= − ∂
∂Ri

(
Φatt +Φr) . (4.16)

From the definition of the path length, Eq. (4.14), it is clear that the attractive force fatt
i on

blob i due to the elastic band between blobs i and i+1 is always directed along Ri −X1:

fatt
i = −

∂ϕatt
(

Li,i+1

)
∂Ri

= −
∂ϕatt

(
Li,i+1

)
∂Li,i+1

∂Li,i+1

∂Ri

= −c3µ
(

Li,i+1

)µ−1 Ri −X1∣∣Ri −X1

∣∣ , (4.17)

and, correspondingly, the force due to this elastic band on blob i+1 is always directed along
Ri+1 −Xp, see Fig. 4.4.

It is important to stress that we have constructed a system in which the total energy is
conserved. No work is done on the entanglements because the net force is always zero. Also,
the entanglements bear no mass and hence have no kinetic energy. However, the Hamiltonian
is history dependent. To calculate the forces at time t we need information about the number
of entanglements and their positions along the backbones of the chains, which is a result of
events at times t ′ < t. In this respect the ensemble is not canonical.

The reader may wonder why the repulsive term of the bonded blob interaction, Eq. (4.9),
was not redefined to be a function of the path length, as was realized for the attractive term.
The main reason is that the equilibrium position of the entanglement would not be uniquely
defined if lower repulsive energies were associated with increased path lengths. Local min-
ima would emerge in which the minimization procedure could be trapped. Moreover, direct
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Figure 4.5: The gradient of the attractive en-
ergy has a singularity at Ri. Near this point
the magnitude of the attractive force on the
entanglement X stays approximately con-
stant, while its direction is given by the unit
vector from X to Ri [cf. Eq. (4.17)]. This
direction changes promptly near Ri (dashed
arrow).

repulsion between the centers of bonded blobs is needed to keep the angular forces from
growing too large. A potential defined in terms of angle θ , such as Eq. (4.11), results in a
torque between two bonds. If either one of the bond lengths tends to zero, the force on the
blob will go infinite, which is highly undesirable.

We end this subsection by mentioning a subtlety involved in the minimization of the at-
tractive energy. Most effective minimization procedures require evaluations of both functions
and gradients, i.e. forces. The total force on an entanglement is the sum of the forces along
its four arms. Each of these forces is minus the force on its neighbour along the relevant
arm. Now, for example, while moving X in Fig. 4.5 at constant blob positions R, the force
on X has a singularity at Ri, as elucidated in the figure. Notice that the order of objects is
not changed in this step of the entanglement algorithm; only in the last step will we check
for a possible slip across the blob. Now the above singularity will cause the minimization to
converge erroneously if at all. We remedy this problem by adding, at short distances between
X and Ri, an extra repulsive force

gadd = −c3µ
(

Li,i+1

)µ−1(
1− r

δ

) Ri −X∣∣Ri −X
∣∣ (r < δ ) (4.18)

r =
∣∣Ri −X

∣∣ , (4.19)

on the entanglement, and a corresponding force fadd
i = −gadd on blob i. At short distances

this extra repulsive force on the entanglement counteracts the attractive force gatt =−fatt
i , and

prevents the distance r to become too small. Of course in a next step it must be checked if
it is profitable to interchange the order of X and Ri. A similar procedure must be applied to
all pairs of connected objects coming close to each other. The value of δ was chosen equal
to 10−4 nm, small enough to have a negligible impact on the configurations of the entangled
chains, but allowing for a successful convergence of the minimization procedure.

4.3.3 Detecting new (dis)entanglements

In contrast to crosslinks in rubbers, entanglements have a finite lifetime and are continuously
appearing and disappearing. In the model that is developed here, a polymer chain is viewed as
a succession of objects, be they blobs or entanglements, connected by line segments. During
the simulation we keep track of all unattached pairs of line segments which are close together.
They may, for instance, be extracted from the blob neighbour list. For each pair of line
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segments and at each instant of time the following triple product is calculated:

Vi j =
(

ri − r j

)
·
((

ri+1 − ri

)×(r j+1 − r j

))
, (4.20)

in which i and i + 1 label two consecutive objects along a chain, i.e. define the first line
segment. The second line segment is defined by j and j + 1 [see Fig. 4.1(a)]. Note that the
absolute value of the triple product is the volume of the parallelepiped defined by the vectors
ri+1 − ri, r j+1 − r j, and ri − r j. There are two possibilities for the “volume” Vi j to become

zero.2 First, if the distance between the two line segments becomes zero. Second, if the
two line segments are parallel. In a molecular or stochastic dynamics simulation the latter
possibility can be neglected (the chance of two lines running exactly parallel at any time is
extremely small, even considering the limited machine precision), so if Vi j changes sign from

one time to the next, a possible bond crossing has occurred.3 However, Eq. (4.20) does not
distinguish between the physical crossing of two finite line segments and the crossing of two
infinite lines. An additional check has to be made to be sure that the crossing is taking place
along the physical part of the two finite line segments. In order to calculate the exact crossing
point, first the exact time of crossing during the last time step must be calculated. Although
in principle this involves solving a third order equation, it is found empirically that solving a
linear interpolation of Vi j in time gives nearly the same time of crossing. Having determined
the positions of the objects at this time, the next task is to find the position X where the two
line segments have crossed [see Fig. 4.1(b)]. To this end define the parameters λ1 and λ2 by

X = ri +λ1

(
ri+1 − ri

)
= r j +λ2

(
r j+1 − r j

)
, (4.21)

i.e. λ1 defines the crossing point on the line through objects i and i+1, with λ1 = 0 at object
i and λ1 = 1 at object i + 1, and correspondingly for λ2. These are three equations with
two unknowns, λ1 and λ2, so any one equation can be dropped and the remaining two be
solved (this stems with the fact that the line segments are already confined to a plane in three
dimensional space). A physical crossing between the two line segments has occurred if the
crossing point lies between both i and i+1 and j and j +1, i.e.(

0 < λ1 < 1
)∧ (0 < λ2 < 1

)
. (4.22)

The algorithm now proceeds as follows: an entanglement is created, initially at the position X
where the two line segments have crossed each other. In the next time step the minimization
of the attractive energy will move the new entanglement to its equilibrium position, and the
entanglement will contribute to the elastic forces between chains [Fig. 4.1(c)].

2 A third possibility is that the length of either vector becomes zero. In this rare case impreciseness of the
minimization step may lead to false (dis)entanglements. Therefore, if the distance between two connected objects is
smaller than ε (introduced in Sec. 4.3.4) it is not allowed to (dis)entangle.

3 Only in an extremely rare case will two line segments simultaneously cross and alter relative orientation during
one time step. In that case Vi j will not alter sign. We are disregarding entanglements and disentanglements of this
kind.
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We would like to point out the fact that, in the developed model, two attached (consec-
utive) line segments can never entangle because the four objects which are connected by an
entanglement will all have to be different. If either two objects are the same, the volume Vi j
between the line segments is always zero and never changes sign.

After an entanglement is created, the associated volume Vi j will serve to detect future
disentanglements. If the volume Vi j of the four objects surrounding an entanglement changes
sign from one time to the next, a possible disentanglement has occurred. Additional checks
are made in exactly the same way as described for the creation of entanglements, i.e. Fig. 4.1
may also be read backwards.

4.3.4 Non-trivial moves

While searching for its equilibrium position, an entanglement can move freely along the chain
between two adjacent objects. At a certain moment, however, the attractive energy would be
lower if the entanglement could slip past a blob one position further along the chain backbone,
or to the other side of the next entanglement, or, in other words, if the order of objects within a
chain would be altered. The order-altering moves are not trivial, but important for a realistic
treatment of the entanglement constraints. The algorithm detects if an entanglement has a
natural tendency to get close to either one of its adjacent objects by measuring the distance
to these objects. If the distance becomes smaller than a prescribed value ε , i.e.∣∣ri −X

∣∣< ε , (4.23)

where ri is the position of the adjacent object and ε is sufficiently small compared to the
average bond length, a subalgorithm will check order-altering moves. The value of ε was
chosen equal to 10−2 nm, much smaller than the average bond length of roughly 1.5 nm. The
subalgorithm makes the following checks:
1. If the object which is approached is another entanglement go to 2; if it is a blob go to 3.
2. Check if it is physically possible for one entanglement to slip past the other. If it is possible,
swap the order in which the entanglements appear in the chain backbone. Otherwise do not
swap. Back to main program.
3. If the blob lies at the extremum of a chain, remove the entanglement and go back to the
main program. Otherwise go to 4.
4. If a slip past the blob results in an entanglement of a line segment with itself, remove the
entanglement (vide infra) and go back to the main program. Otherwise go to 5.
5. If a slip past the blob results in disentanglement, remove the entanglement. Otherwise slip
the entanglement past the blob. Back to main program.

If the entanglement has survived the slip past the adjacent object, the algorithm will find
a new equilibrium position in the next time step. Only one slip per time step is allowed for
each entanglement. In the following we will clarify the various checks which are made in the
subalgorithm.

Suppose two entanglements are very close to each other, as in Fig. 4.6. The mean position
of the two entanglements, rm, will then be very close to both entanglement positions, X1 and
X2. Define s1 to s6 as the vectors going from rm to the surrounding six objects with positions
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Figure 4.6: Two entanglements at X1 and
X2 are allowed to slip past each other if the
two arms of the first entanglement (s1 and
s2) can both pass over the two arms of the
second entanglement (s3 and s4). The re-
verse case is also possible.

r1 to r6, in formula:

rm = 1/2
(
X1 +X2

)
, (4.24)

si = ri − rm. (4.25)

Now it is assumed that the two entanglements can swap if the two arms connected to the first
entanglement, s1 and s2, both go over the two arms connected to the second entanglement,
s3 and s4, or the other way around. In the first case we demand that the projections of s3
and s4 onto the plane defined by s1 and s2 both fall in between s1 and s2. To make this
mathematically explicit: both s3 and s4 must lie in

R =
{

r ∈ IR3 | r = l1s1 + l2s2 + l3
(
s1 × s2

)
,

l1 ∈ IR+, l2 ∈ IR+, l3 ∈ IR
}

, (4.26)

i.e. any vector r in R must have positive components along s1 and s2 in the basis
{

s1,s2,s1 × s2

}
.

For a given vector r these components are

l1 (r) =

(
r · s1

)
s2

2 −
(
r · s2

)(
s1 · s2

)
s2

1s2
2 −
(
s1 · s2

)2 , (4.27)

l2 (r) =

(
r · s2

)
s2

1 −
(
r · s1

)(
s1 · s2

)
s2

1s2
2 −
(
s1 · s2

)2 . (4.28)

If all four numbers l1
(
s3

)
, l2
(
s3

)
, l1
(
s4

)
, and l2 (s4) are positive, the entanglements can

swap. Now s1 · s2 = s1s2 cosϕ , with ϕ the angle between the two arms s1 and s2. Since these
are never exactly parallel, the denominators in Eqs. (4.27) and (4.28) are always positive, so
only the nominators need to be calculated. As already mentioned, the inverse is also possible:
the entanglements can swap if the projections of s1 and s2 onto the plane defined by s3 and s4
both fall in between s3 and s4.

Now suppose the entanglement is near a blob. The subalgorithm checks if this blob is the
first or last blob of the chain, because then a slip past this blob means that it is slipping off the
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Figure 4.7: (a) A slip past the last blob of
a chain results in disentanglement. (b) If a
chain is entangled with itself and the loop is
shrinking as far as to pass through only one
object apart from the entanglement, a self-
disentanglement will occur.

Figure 4.8: (a) The entanglement X slips
past blob 4 if the (extension of) the line
from blob 4 to object 5 does not cross the
1-2-3 face of the tetrahedron (dotted lines).
(b) The chain disentangles if this face is
crossed.

end of the chain [Fig. 4.7(a)]. Usually this is not the case and the program checks if a slip
past the blob results in an entanglement of two consecutive line segments, as indicated in Fig.
4.7(b). This happens if a chain is entangled with itself, and the loop shrinks as far as to pass
through only one object apart from the entanglement. Since all four arms of an entanglement
have to end at different objects, the entanglement will simply be released in this case. This is
called a self-disentanglement.

Finally it is checked if a slip past a blob results in a disentanglement. Suppose two
(parts of) chains are entangled. One (part of the) chain is going from an object at r1, via the
entanglement at X, to an object at r2, and the other (part of the) chain is going from r3, via
the entanglement, to r4, as in Fig. 4.8. Due to the very definition of an entanglement it will
always be positioned inside the tetrahedron formed by r1, r2, r3, and r4. Although in principle
entanglements may occur in one of many complicated forms, the simplest situation shown in
Fig. 4.9(a) is by far the most probable, and we will assume that we will always have to deal
with this simple unwinded form. Now suppose the entanglement wants to slip past a blob at
r4. It will depend on the orientation of the line segment between the blob at r4 and the next
object at r5 whether the entanglement will continue to exists, or must be abolished. Given
the unwinded form of the entanglement, it must be abolished if the line segment r5 − r4, or
its continuation, passes through the r1-r2-r3 face of the tetrahedron, as in Fig. 4.8(b). In all
other cases, as in Fig. 4.8(a), a new entanglement equilibrium position must be searched at
the other side. A mathematical criterion is easily obtained by equating the expression for a

Figure 4.9: The uncrossability constraint
does not distinguish between different link
windings. Windings (a), (b), and (c) are
all equivalent to the algorithm. Obviously
types (b) and (c) will be highly improbable.
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Figure 4.10: The minimization to determine
the positions of the entanglements between
these four chains can be split up in two inde-
pendent parts, indicated by the dotted lines.

point in the r1-r2-r3 face of the tetrahedron with the expression for a point along the r5-r4
line,

r3 + l1
(
r1 − r3

)
+ l2
(
r2 − r3

)
= r4 + l3

(
r5 − r4

)
, (4.29)

which can be solved for the parameters l1, l2 and l3. A disentanglement will occur only if(
l1 > 0

)∧ (l2 > 0
)∧ (l1 + l2 < 1

)∧ (l3 > 0
)

. (4.30)

This completes the description of the non-trivial moves.

4.3.5 Increasing the speed of the algorithm

The introduction of the entanglement algorithm in a standard molecular or stochastic dy-
namics program will cause a lot of computational overhead. The calculations concerning
non-trivial moves are quite complicated, but they do not occur very often and do not con-
sume a considerable part of the cpu time. For the detection of new entanglements in principle
all line segment pairs must be checked. Much time is saved by looping over the standard
list of close neighbours and considering the line segments attached to these particles. The
computational costs are then comparable to the costs of evaluating non-bonded forces in a
standard program. The slowest part of the entanglement algorithm is the equilibration step
where in principle the total attractive energy, Eq. (4.15), has to be minimized. However, the
minimization can be split up in several independent parts by recognizing the fact that moving
an entanglement on one side of a blob will not influence the attractive energy residing in the
bonds which are connected to an entanglement on the other side of the blob (unless there
is a path around the blob leading to the other entanglement without encountering any other
blobs). For instance, in Fig. 4.10 the parts indicated by “1” and “2” can be equilibrated inde-
pendently. Despite this fact, the minimization can still consume between 70 and 95 percent
of the total time spent in the entanglement algorithm, depending on the efficiency of the min-
imization procedure and the desired accuracy. In this work we demanded a relative energy
convergence of 10−8. A stochastic dynamics program using the entanglement algorithm was
roughly 10 times slower than the same program without entanglement constraints. The ad-
vantage of being able to coarse-grain, however, has more than compensated this unfavourable
factor. More important, it is now possible to investigate the influence of the uncrossability
constraint on all kinds of dynamic properties by comparing results with and without use of
the entanglement algorithm.
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4.4 System preparation

4.4.1 Introduction

In Sec. 4.2 we described a possible coarse-graining procedure to arrive at a mesoscopic melt
of chains, each represented by N = 6 blobs, starting from a microscopic simulation of a
C120H242 melt. In the remaining part of this chapter the influence of the uncrossability con-
straint on the dynamics and rheology of this system will be made explicit by comparing
results of entangled and unentangled simulations. To discern effects of chain stiffness some
additional simulations will be described in which the angular potential was set to zero. In this
section we will describe how the initial boxes were created and how the friction coefficient
was determined.

4.4.2 Preparation of the initial boxes

For a correct sampling of the pressure tensor autocorrelation it is very important that the
initial configuration with which the simulation will be started has no average stress. This
puts forward many difficulties for molecular dynamics simulations of microscopic chains.
However, unlike microscopic chains, relaxed initial configurations of mesoscopic chains are
realized with comparative ease due to the softness of the interactions. Initial configurations
of the chains were generated according to the distribution functions obtained from the micro-
scopic simulations (see Fig. 4.3). A total of 120 chains were placed and oriented randomly in
each simulation box, at a density ρ = 0.761 g/cm3, which is equal to the microscopic density.
The non-bonded interaction parameter (c0) was set to 1/10th of its final value in order to gen-
tly push blobs with large overlap apart, while allowing all bonds to cross each other. After
this initial homogenization the non-bonded interaction parameter was gradually increased to
reach its final value. After equilibration the initial boxes for the unentangled simulations were
ready. An initial box for an entangled simulation was produced by switching on the uncross-
ability constraint and letting the entanglements form. The total number of entanglements was
monitored and observed to reach an equilibrium value (in an average sense) within a few
nanoseconds. Because entanglements are continuously created and annihilated the number
of entanglements was observed to fluctuate around an average value of 560 with a standard
deviation of 40. In Chapter 5 we will give details of entanglement time correlation functions.

4.4.3 Determination of the friction coefficient

The Langevin equation of motion, Eq. (4.2), contains one parameter, the blob friction coeffi-
cient ζ , that has not yet been fixed. It must be emphasized that, apart from the lengths δ and
ε in the entanglement algorithm which must be chosen small enough, the friction coefficient
is the only free parameter of our model. The Langevin stochastic dynamics method has been
used to perform simulations of polymer chains by several other authors among whom Kre-
mer and Grest. [66] These authors effectively established a coupling between the system and
a heat bath in order to keep the system at some desired temperature. In order not to influence
the chain dynamics too much, they had to choose the friction coefficient much smaller than
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the effective friction between the beads of the polymers, which is caused by the mutual in-
teractions and relative motions of the beads and which determines dynamic properties, such
as diffusion. In our method however, the system has been coarse-grained to a much higher
level and the interactions have become very soft. As a consequence, besides acting as a ther-
mostat, the friction coefficient ζ has acquired the meaning of a physical friction. One might
ask therefore if the friction model that is applied here (isotropic, delta-correlated friction) is
not too much of a simplification. Indeed, somewhat more complicated friction models have
been used in the literature, like for example in DPD methods, but also these models don’t
do justice to all details of the movements on the coarse-grained level. Obviously, finding the
right friction model will be a tremendous task (see, for instance, Ref. [1] in which much effort
is taken to correctly describe the frictional interactions in a dumbbell of blobs). However, the
purpose of this chapter is not to find the best possible friction model, yet to test the entangle-
ment algorithm. It will be shown that the simple approach combined with the entanglement
algorithm yields results which already deviate substantially from the Rouse case.

In this chapter the blob friction coefficient was chosen such that the chains center of mass
diffusion coefficient D of the entangled mesoscopic system matched the one measured in the
microscopic C120H242 system. Notice that this is the bare friction coefficient, which goes into
the Langevin equation and is not necessarily related to the chains diffusion coefficient D by
ζ = kT/(ND) with N = 6 like it would have been for a melt of Rouse chains. In fact from a
number of test calculations we deduced that the friction ”frequency” ξ = ζ/M, which for a
Rouse chain would be independent of the number of monomers used to define a blob, must
be chosen equal to 8.0 ps−1, while in Chapter 3 we found that the Rouse friction frequency
of a C120H242 chain at 450 K equals 19.0 ps−1. Apparently the intermolecular interactions
(specifically the entanglements) introduced a substantial extra friction to the chains. In Chap-
ter 5 we will present a direct way to calculate ξ from microscopic simulations, leaving no
free parameters at all.

The Langevin equation was integrated using the algorithm of Allen [3] (or, equivalently,
Van Gunsteren and Berendsen [50]). Given the choice of the friction, a time step ∆t = 0.1 ps
was found to be small enough to accurately integrate the equations of motions. The simula-
tions were run up to 4×106 time steps corresponding to 0.4 microseconds.

4.5 Results

4.5.1 Mean square displacement

Two time-dependent mean square displacements gbl (t) and gcm (t) have been measured and
are shown in Fig. 4.11. They are defined as follows:

gbl (t) =
1
N

N

∑
i=1

〈
[Ri (t)−Ri (0)]2

〉
, (4.31)

gcm (t) =
〈
[Rcm (t)−Rcm (0)]2

〉
, (4.32)
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Figure 4.11: Mean square displacements of
entangled chains (solid), and unentangled
chains with (dot-dashed) or without (dashed)
chain stiffness. The upper curves are the
mean square displacements of the blobs, Eq.
(4.31), the lower curves of the center of mass
of the chain, Eq. (4.32).
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Figure 4.12: Mean square displacements of
entangled mesoscopic chains (solid lines)
compared with the results of microscopic
molecular dynamics simulations (Chapter 3).
Blob mean square displacements are indi-
cated by circles, chain center of mass mean
square displacements by squares.

where Ri is the position of the ith blob and Rcm is the center of mass position of the chain of
length N. The chains center of mass mean square displacements of the unentangled chains
(dashed and dot-dashed lines) are almost perfectly linear with time for all times, as is the case
for Rouse chains. Also, the blob mean square displacement of the unentangled chain without
angular potential can perfectly be described by the Rouse model (not shown). Adding an
angular potential produces only small deviations from the Rouse model, caused by faster
relaxations at smaller scales. This will become apparent in the next subsection when the
Rouse modes are analyzed. In the entangled case (solid lines), both the blob and center of
mass mean square displacements are slowed down considerably after 100 ps.

In Fig. 4.12 the results of microscopic molecular dynamics simulations (symbols) are
compared with the entangled mesoscopic results (solid lines). In both cases a sub-linear
exponent (tx, with x < 1) in the center of mass mean square displacement is observed. A
similar subdiffusive exponent is observed in both simulation [100] and neutron spin echo
spectroscopy [101] results of a C100H202 melt. Good quantitative agreement of the minimim
exponent is obtained for gcm (t): x = 0.80 and x = 0.77 for the microscopic and mesoscopic
models respectively and x = 0.83 for a C100H202 chain from literature. [101] The influence of
the entanglement algorithm on gbl (t) seems to be slightly too strong: x = 0.65 (microscopic)
and x = 0.56 (mesoscopic). In view of the crudeness of the coarse-grained interaction model
we find this acceptable.

The success of the entanglements and the unimportance of the angular dependent part
of the potential in describing the subdiffusive regimes make it highly improbable that these
regimes should result from internal, single chain properties.
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For long times, the center of mass diffuses freely. From this regime we can determine the
self-diffusion coefficient according to

D = lim
t→∞

gcm (t)
6t

. (4.33)

Pearson et al. have measured self-diffusion coefficients by means of field gradient NMR at
450 K experimentally for a large range of molecular weights, although not for the weight
of C120H242 chains. [106] An interpolation of their data yields Dexp ≈ 0.67× 10−6 cm2/s.
The microscopic simulation yielded D = 1.09×10−6 cm2/s, overestimating the experimental
result a bit. Even though the friction ξ was determined by matching the diffusion coefficient
of the entangled mesoscopic model with that of the microscopic model, this matching was
not perfect, and a slightly different result was obtained: D = 0.93×10−6 cm2/s. Without the
uncrossability constraint much larger diffusion coefficients were measured: D = 2.56×10−6

cm2/s with, and D = 2.52×10−6 cm2/s without angular potential. This is close to the Rouse
model predicted diffusion coefficient of D = 2.78× 10−6 cm2/s, using T = 450 K, N = 6,
and ξ = 8 ps−1.

Of course, the friction coefficients of the unentangled systems might have been varied
as well to match the microscopic diffusion coefficient, but then the results would not have
agreed with those of the microscopic simulations at shorter time scales. It is the merit of
our entangled model that it describes the motions of the chains and parts of them both on the
intermediate and on the long time scales. This statement will be substantiated in the following
subsections.

4.5.2 Rouse coordinates

It has been shown both experimentally [101] and by computer simulation (see Chapter 3)
that in some time regimes melts of intermediately long chains can be well described by the
simple Rouse model. It is therefore interesting to investigate the systems in terms of Rouse
coordinates: [13]

Xk (t) =
1
N

N

∑
i=1

Ri (t)cos

[
kπ
N

(
i− 1

2

)]
(k = 0, . . . ,N −1) (4.34)

Notice that in this subsection Xk is the normal mode instead of an entanglement position.
The motion of the center of mass is given by the zeroth mode, k = 0. All other modes are
associated with internal motions of the chain, mode k roughly corresponding with motion of
a subchain of size N/k. Within the Rouse model each of these modes relaxes independently
and exponentially with a relaxation time τk,〈

Xk (t) ·Xk (0)
〉
/
〈
X2

k

〉
= exp

(−t/τk

)
, (4.35)

τ−1
k = 4W sin2

(
kπ
2N

)
, (4.36)

where the relaxation rate W is a characteristic frequency of the Rouse model and is given by:

W =
3kT
ζb2 , (4.37)
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with b the statistical segment length.
Normalized Rouse mode autocorrelation functions for the three systems are shown in

Figs. 4.13(a) to (e) for modes k = 1 to 5. The first two modes, k = 1 and k = 2 are slowed down
under the influence of the angular potential (from dashed to dot-dashed lines), in qualitative
agreement with the semiflexible chain model of Harnau et al. [54] They are slowed down even
more in case the uncrossibility constraint applies (solid lines). On the other hand, the modes
at the smallest scales relax much faster when the chains get some stiffness. Interestingly,
these modes relax equaly fast with or without uncrossability constraint. So it seems that the
uncrossabililty of chains does not affect the relaxation at small scales. However from Fig.
4.13(f), which shows the relaxations of the entangled system on a semi-logarithmic scale, it
is seen that these relaxations are not exponential as predicted by the Rouse model, Eq. (4.35).
The reason for this may be that the non-bonded interactions and uncrossibility constraints
modify the equations of motion and make them highly nonlinear. [126] As a consequence the
Rouse modes can no longer be considered as normal modes of the chains and may no longer
relax exponentially.

To quantify the non-exponentiality, the Rouse mode autocorrelation functions were fitted
with stretched exponentials,

〈
Xk (t) ·Xk (0)

〉
/
〈
X2

k

〉
= exp

[
−(t/τ∗k )βk

]
, (4.38)

where the relaxation times τ∗k and stretching parameters βk depend on mode number k. The
fit parameters for the three systems are given in Table 4.2. Two observations can be made.
(i) The deviations from exponential behavior (βk = 1) become larger with increasing mode
number, i.e. smaller scales relax increasingly non-exponentially. This is in contradiction with
the results of Richter et al. [112] who did not find any hint of stretching in the internal modes,
yet in accordance with the results of Shaffer [126] who placed polymers on a lattice and ap-
plied uncrossability constraints. To clear this ambiguity, more experimental evidence of the
existence or non-existence of stretched relaxations will be needed. (ii) Including chain stiff-
ness and uncrossability both make the deviations from exponential behavior become larger,
resulting in βk = 0.77 for modes 3, 4 and 5 in the entangled system. The stretching param-
eters of Shaffer compare to ours, about 0.75 for the largest mode numbers, although in his
case there was less difference between βk values of crossing and non-crossing polymers. A
possible explanation for this smaller difference may be that polymers on a lattice are already
more restricted in their motion than polymers in continuum models, so there will be a less
pronounced difference between crossing and non-crossing polymers.

In analogy with Shaffer’s work the effective Rouse mode relaxation times were deter-
mined as time integrals over the normalized relaxation functions as the macroscopic stress
relaxation is governed by these integrals. However, instead of integrating Eq. (4.38) using
the fit parameters, the measured relaxation functions were integrated directly to account for
any deviations of the true curves from the fitted curves:

τeff
k =

∫ ∞

0

〈
Xk (t) ·Xk (0)

〉
/
〈
X2

k

〉
dt. (4.39)
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Figure 4.13: Rouse mode autocorrelation functions of entangled chains (solid), and unentan-
gled chains with (dot-dashed) or without (dashed) chain stiffness, for mode numbers 1 (a)
to 5 (e). The results of the entangled chains are plotted on a semi-logarithmic scale in (f),
demonstrating non-exponential relaxation.
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system k
〈
X2

k

〉
(nm2) τ∗k (ps) βk τeff

k (ps) W eff
k (ns−1)

unentangled 1 0.725 1920 1.00 1920 1.94
not stiff 2 0.190 520 0.98 525 1.91

3 0.094 270 0.96 275 1.82
4 0.062 185 0.95 195 1.71
5 0.050 155 0.94 165 1.63

unentangled 1 1.110 3100 1.00 3100 1.20
stiff 2 0.227 670 0.96 680 1.47

3 0.084 250 0.92 270 1.85
4 0.044 135 0.90 155 2.15
5 0.031 90 0.87 110 2.44

entangled 1 0.919 5650 0.94 5515 0.68
stiff 2 0.192 940 0.80 1065 0.94

3 0.074 280 0.77 345 1.45
4 0.040 130 0.77 165 2.02
5 0.028 80 0.77 110 2.44

Table 4.2: Amplitude, fit with a stretched exponent, Eq. (4.38), effective relaxation time and
effective relaxation rate as a function of Rouse mode number for the three different systems.

In analogy to Eq. (4.36) we define the effective Rouse rate

W eff
k =

[
4τeff

k sin2
(

kπ
2N

)]−1

, (4.40)

which in the case of Rouse chains is a constant. Effective relaxation times and rates are
listed in Table 4.2. As can be seen in Fig. 4.14, the relaxation rates of the unentangled
system without chain stiffness (dashed line) are slightly decreasing with increasing mode
number. Because the decrease is relatively small, the relaxation time distribution of this
system is essentially Rouse-like. As was already noted, a stiffening of the chain (dot-dashed
line) causes slower relaxation of the large scale modes and a faster relaxation of the small
scale modes. The uncrossability constraint makes the large scale modes even slower, but
leaves the small scale modes unaffected (solid line). We can compare these results with the
work of Richter et al. who have analyzed dynamic structure factors from neutron spin echo
experiments in terms of relevant theoretical approaches. [112] They argued that a stiffening
of the chain is essential but a stiffness correction alone is not enough. Using a realistic value
of the stiffness of the chain, their calculations showed that the relaxation times decrease
too slowly with increasing mode number to reproduce the experimentally observed dynamic
structure factors. These results were questioned by Harnau, [53] but Richter et al. argued in
response that additional (internal) friction terms may be necessary to explain the experimental
results. [113] Our results suggest an alternative additional mechanism. The uncrossability
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Figure 4.14: Effective Rouse relaxation
rates as a function of mode number, Eq.
(4.40), for entangled chains (circles), and
unentangled chains with (squares) or with-
out (triangles) chain stiffness. The lines are
guides to the eye.
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interactions between different (parts of) chains increase the relaxation times of the large scale
modes, even for chains which are generally considered not to be entangled.

The crossing over of relaxation rates is often associated with the entanglement length
Ne. In Ref. [115] Richter et al. argue that the modes with k ≥ N/Ne are not modified by
the entanglement constraints, while modes with k < N/Ne are strongly slowed down. Their
Fig. 7 may be compared with our Fig. 4.14. In our case the crossing over occurs at k ≈ 3,
i.e. the entanglement length of our model appears to be approximately 6/3 = 2 blobs. This
corresponds in the microscopic (polyethylene) chain to a length of C40. The values reported
in the literature have been going up and down, mainly because the definition of entanglement
length was (and still is) unclear. Richter et al. derived Ne = 136 monomers, i.e. C136, from
their dynamic structure factor measurements, [109] and Carella et al. measured Ne = 65
monomers from rheological measurements. [15] Our result is in any case smaller than those
from the literature, but this is due to the fact that this estimate is not derived from dynamic
structure factor measurements, nor from rheology. We will return to this point in Chapters 5
and 6.

4.5.3 Dynamic structure factor

The coherent dynamic structure factor can be measured by means of neutron spin echo spec-
troscopy. In the experiments conducted by Richter and co-workers protonated chains were
dissolved in a deuterated matrix. [101,112,120] Because the scattering lengths of protons and
deuterons differ, they were able to extract the single chain coherent dynamic structure factor.
It can be calculated from

S (q, t) =
1
Ns

Ns

∑
i=1

Ns

∑
j=1

〈
exp
{

iq·
[
ri (t)− r j (0)

]}〉
, (4.41)

where q is the scattering wave vector and the double summation is over all Ns scattering
centers of one chain. Because our chains have been coarse-grained, detailed microscopic
information about positions of the hydrogens is lost. However, to a good approximation the
blob positions Ri (t) can still be used in Eq. (4.41) to calculate the microscopic dynamic
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structure factor, provided the wavelength of the scattering wave vector is large compared to
the bond length of bonded blobs. As Fig. 4.3 shows, the maximum bond length is of the order
of 2 nm, so q will have to be small compared to 3 nm−1.

The results for five different scattering vectors are shown in Fig. 4.15 for all three meso-
scopic systems (solid lines). Dynamic structure factors were also calculated for correspond-
ing Rouse chains (dotted lines). For each system the following three Rouse parameters were
used: the measured effective first relaxation time τeff

1 (Table 4.2), the measured diffusion coef-
ficient D, and N = 6 [see Eqs. (2.37), (2.20), and (2.22)]. For the unentangled system without
angular potential, Fig. 4.15(a), the measured curves coincide perfectly with the Rouse curves
for all but the largest q vector. This confirms the observation made before that this system can
be viewed as essentially Rouse-like. If the chain is made stiffer, Fig. 4.15(b), the smallest q
vector result coincides with the Rouse curve, but all larger q vector results relax slower than
the Rouse curves, as was already pointed out by Harnau et al. [54, 55] If the uncrossability
constraint is applied, Fig. 4.15(c), again the first q vector result coincides with the Rouse
curve. All larger q curves not only relax slower, but also do not run parallel to the corre-
sponding Rouse curves. These flattened curves imply a slower relaxation of S (q, t) for large
enough times.

In Fig. 4.16 the results of the entangled mesoscopic model (solid lines) are compared with
the results determined from the microscopic simulations described in Chapter 3 (symbols).
In that chapter it was found that an optimized Rouse fit yielded τ1 = 6.5 ns, D = 1.15×10−6

cm2/s, and N = 15. This Rouse result is indicated in Fig. 4.16 by the dotted lines. As already
mentioned, the present works friction ξ was determined by matching the diffusion coefficient
of the mesoscopic model with that of the microscopic model, but because of inaccuracy of
the interpolation a slightly smaller diffusion coefficient was obtained. As a result all small
q dynamic structure factor results are slightly above the microscopic results. Despite this
inaccuracy, it is clear that the entangled mesoscopic model yields results which are far more
better than the Rouse predictions. The results for q equal to 0.55, 1.0 and 1.4 nm−1 are in
perfect agreement with the microscopic chain. The results for both of the large q values,
1.8 and 2.2 nm−1, suffer from the lack of microscopic detail. In all cases, the slopes are in
agreement with the microscopic results, from which we conclude that our model captures the
physics much better than the Rouse model.

4.5.4 Shear relaxation modulus and viscosity

In a non-periodic system, the stress tensor in the presence of entanglements may be given by

σσσ = − 1
V

[
n

∑
i=1

MViVi +RiFi

]
− 1

V

[
p

∑
k=1

XkGk

]
. (4.42)

The first bracketed term is the standard expression for the stress tensor in a non-periodic sys-
tem of n particles without entanglements: Vi is the velocity and Fi the force on particle i. The
second bracketed term contains the sum of all products of entanglement positions Xk and cor-
responding forces Gk. This term may be added because the total force on each entanglement
is zero. In the presence of entanglements, the attractive forces appear as pair interactions
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Figure 4.15: Single chain dynamic structure factors of entangled chains (c), and unentangled
chains with (b) or without (a) chain stiffness (solid lines). In each picture the q values are,
from top to bottom: 0.55 nm−1, 1.0 nm−1, 1.4 nm−1, 1.8 nm−1, and 2.2 nm−1. The dotted
lines show the fit with the corresponding (N = 6) Rouse model, using the longest effective
relaxation time τeff

1 .
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Figure 4.16: Single chain dynamic struc-
ture factors of entangled mesoscopic chains
(solid lines) compared with the results of
microscopic molecular dynamics simula-
tions (symbols) and the optimized Rouse fit
of Chapter 3 (dotted lines). The q values
shown are 0.55 nm−1, 1.0 nm−1, 1.4 nm−1,
1.8 nm−1, and 2.2 nm−1.

between nearest neighbours along the chains, be they blobs or entanglements [see Eq. (4.17)
and the discussion following this equation]. Since these pair interactions obey Newtons third
law we may apply the usual transformation to a periodic system in order to calculate the con-
tribution of the attractive forces to the stress tensor. The remaining contributions to the stress
tensor, due to the angular, non-bonded and repulsive interactions between bonded blobs, are
related to the blob positions only, and can be calculated in the usual way.

The zero shear relaxation modulus is related to the symmetrized traceless part P of the
stress tensor σσσ by [23]

G(t) =
V

10kT
〈P(t) : P(0)〉 . (4.43)

The double contraction means that in practice we can average over five independent contri-
butions: Pxy, Pxz, Pyz, 1

2 (Pxx −Pyy), and 1
2 (Pyy −Pzz). Fig. 4.17 shows the integrals of the zero

shear relaxation modulus up to time t,

η (t) =
∫ t

0
G(t)dt, (4.44)

for the three mesoscopic models, together with the Rouse predicted integrals using the ef-
fective first Rouse times τeff

1 (dotted lines). The unentangled system without chain stiffness
(dashed line) follows the Rouse curve quite well, so the viscosity equals that of the corre-
sponding Rouse chain, i.e. 2.5 cP. With chain stiffness (dot-dashed line) the integral system-
atically lies beneath the Rouse result. This can be explained by the fact that the viscosity of
a Rouse melt is proportional to the sum of all relaxation times (see the Appendix of Chapter
3). The Rouse curve in Fig. 4.17 was calculated using a relaxation time spectrum obtained
from the first, largest scale relaxation time, but as it was shown before the small scale modes
actually have shorter relaxation times. Still, the increased chain stiffness has increased the
viscosity to approximately 3.6 cP. The result of the entangled system is quite remarkable
(solid line). Initially it follows the Rouse prediction up to t = 5 ns, but then continues to
increase where the Rouse prediction is already converged. The following mechanism may
explain this result: initially the stress due to intrachain interactions predominates the stress
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Figure 4.18: Integral of the zero shear re-
laxation modulus up to time t of the en-
tangled mesoscopic model (solid) and from
microscopic molecular dynamics simulations
(dashed) on a double-logarithmic scale.

due to interchain interactions and the relaxation is rather Rouse-like. However, after the in-
trachain stress has relaxed, the interchain stress still remains. This interchain stress relaxes
slower than the slowest intrachain relaxation, i.e. slower than τ1. This interchain stress will
eventually bring about the plateau modulus for longer chains.

Fig. 4.18 shows the integrals of both the microscopic and entangled mesoscopic systems
on a double-logarithmic scale. Here the strength of the coarse-grained simulation combined
with the entanglement algorithm is apparent: after a comparable run time of a few months,
the microscopic simulations reached correlation times up to 1 ns, while the coarse-grained
simulations reached up to 50 ns (notice that the coarse-grained system contained ten times
as many chains). At medium long times the mesoscopic results are nicely following the
microscopic results, so we have confidence that the coarse grained model can predict the
viscosity. From the asymptotic value of the integral we estimate the viscosity of a C120H242
chain at 450 K to be η ≈ 10.5 cP. This is in good agreement with (interpolated) experimental
results of Pearson et al., who found ηexp ≈ 13.5 cP. [106]

4.6 Conclusions

We have investigated the influence of uncrossability constraints on the dynamics of coarse-
grained polymer melts. In the first part of this work we have described how such a constraint
may be implemented in a continuum simulation model. We next have applied our method
to a C120H242 melt, represented by chains composed of six blobs. In order to investigate the
importance of various aspects of our model, we have simulated two other systems, both with-
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out the uncrossability constraint: one with and one without chain stiffness. We have found
that the uncrossability constraint is essential to reproduce microscopic dynamic correlation
functions. We summarize our findings in the following points:
1. Neither one of the unentangled systems shows a subdiffusive exponent in the mean square
displacement of the center of mass of the chain; the entangled system does. The subdiffusive
exponent must be caused by uncrossability interactions with the surrounding chains.
2. The Rouse mode autocorrelation functions of the unentangled system without chain stiff-
ness are rather Rouse-like. The other two systems clearly display a stretching of the exponen-
tial decay, which becomes most pronounced for the smallest scales in the entangled system
(β = 0.77). For stiff chains, the effective relaxation rates of small scale modes increase and
those of large scale modes decrease, in agreement with semiflexible chain models. The un-
crossability constraint causes an even slower relaxation of the large scale modes.
3. The single chain dynamic structure factor of the unentangled system without chain stiffness
displays a Rouse-like decay. The incorporation of chain stiffness yields slower decaying
curves, but this is not enough to reproduce the microscopic data. For q values smaller than 1.8
nm−1 the results of a microscopic simulation are well-reproduced by the entangled system.
Results for larger q values can not be reproduced because the coarse-grained simulations
suffer from a lack of microscopic detail.
4. The shear relaxation modulus of the unentangled system without chain stiffness behaves
Rouse-like. The inclusion of chain stiffness has some effect because the relaxation spectrum
is modified. In the entangled system an initial Rouse-like relaxation is observed. After t = 5
ns the chain relaxes more slowly than a Rouse chain. This must be due to a very slow
interchain stress relaxation caused by the uncrossability of chains. This interchain stress is
dominated by the intrachain stress relaxation at shorter times. The viscosity found for this
system (η ≈ 10.5 cP) is close to experimental findings.

In Chapter 5 we will increase the chain length N to investigate the scaling of dynamic
properties. We will pay attention to the entanglement length and investigate how a plateau in
the shear relaxation modulus develops with increasing N.
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5
Time and length scales of
polymer melts studied by
coarse-grained molecular
dynamics simulations

We present coarse-grained molecular dynamics simulations of linear polyethy-
lene (PE) melts, ranging in chain length from C80 to C1000. The employed effec-
tive potentials, frictions, and random forces are all derived from detailed molecu-
lar dynamics simulations, leaving no adjustable parameters. Uncrossability con-
straints are introduced in the coarse-grained model to prevent unphysical bond
crossings. The dynamic and zero-shear rate rheological properties are investi-
gated and compared with experiment and other simulation work. In the analysis
of the internal relaxations we identify a new length scale, called the slowing
down length Ns, which is smaller than the entanglement length Ne. The effective
segmental friction rapidly increases around Ns leading, at constant density, to a
transition in the scaling of the diffusion coefficient from D ∼ N−1 to D ∼ N−2,
a transition in the scaling of the viscosity from η ∼ N to η ∼ N1.8, and conspic-
uous non-exponential relaxation behavior. These effects are attributed to strong
local kinetic constraints caused by both chain stiffness and interchain interac-
tions. The onset of non-local (entanglement) effects occurs at a chain length of
C120. Full entanglement effects are observed only above C400, where the shear
relaxation modulus displays a plateau and the single chain coherent dynamic
structure factor agrees with the reptation model. In this region the viscosity
scales as η ∼ N3.6, the tube diameter is d ≈ 5.4 nm, the entanglement molecular
weight is Me ≈ 1700 g/mol, and the plateau modulus is G0

N ≈ 2.4 MPa, all in
good agreement with experimental data.∗

5.1 Introduction

Long-chain polymer liquids are well-known for their peculiar viscoelastic behavior. The re-
laxation of stress after a step shear strain at first occurs in a liquidlike fashion, but soon, at
least if the molecular weight is sufficiently large, a plateau is reached very similar to what
is found in solids and rubbers. In the long run, the remaining stress of course relaxes, as

∗ The work described in this chapter previously appeared in J. Chem. Phys. 117(2), 925 (2002). [98]
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it must in a liquid. The range of time scales associated with these relaxations can be enor-
mous. On the shortest time scales, processes such as atomic bond vibrations and torsional
jumps are important, whereas the longest time scales are associated with the escape of chains
from entanglements with other, surrounding chains. This escaping time depends strongly on
molecular weight and scales approximately with the molecular weight to the power of 3.4,
irrespective of the chemical details of the polymer.

Because of the enormously large relaxation times, conventional atomistic molecular dy-
namics simulations of long-chain polymer melts are practically impossible. Such simulations
have been performed only for medium long chains up to about 150 monomers. [51, 52, 82–
84, 96, 100–102] At first glance these simulations seem to indicate that the dynamics and
rheology of medium long chains may well be described by the Rouse model. [118] Yet the
applicability of this inherently single chain model has been questioned in literature, especially
as far as the rheology is concerned, because an important part of the shear stress is observed
to arise from the intermolecular interactions. [35, 43, 47] In Chapter 4, we have shown that
interchain interactions are important in the shear relaxation of C120H242.

In order to simulate dynamical and rheological behavior of long chains one has to resort
to coarse-grained models. [48, 63, 66, 68, 97, 107, 130, 131] Usually, the interactions between
two coarse objects, called blobs from now on, are chosen such that bond crossings will be
energetically unfavorable. The range of the repulsive forces is then necessarily of the order of
the maximum separation of two bonded blobs. If one wants to avoid using physically unre-
alistic models, this sets a severe limit to the number of monomers which may be represented
by one blob. Moreover, no systematic method exists to calculate model parameters on the
coarse level from atomistic, i.e., chemically realistic simulations. Of course one may fix time
and length scales by mapping/adjusting simulation to experimental results, but usually it is
doubtful with these models whether one and the same set of mapping parameters is able to
describe all experimental data. In Chapter 4 we proposed a model whose parameters were
calculated from a short molecular dynamics simulation. A friction ‘frequency’ ξ , though,
had to be obtained by trial and error while adjusting the results of a mesoscopic simulation
with those of an atomistic simulation in the time regime where both are applicable. In the Ap-
pendix of this chapter we present a direct way to calculate ξ from microscopic simulations,
thereby turning the whole procedure into an “ab initio” calculation. Obviously ab initio is
not meant in a quantum-chemical sense, but in the sense that we start at the lowest relevant
scale for statistical simulations. In statistical physics the interactions between the constituent
particles are considered to be a prescribed basic ingredient. (There are two reasons to do ab
initio quantum-chemical simulations like, e.g., Car and Parrinello simulations: first, if one
is interested in restructuring of electronic densities, and second, in cases when no simple
interaction model can be formulated and one is obliged to calculate forces on the fly.)

In this chapter we present the results of various dynamic properties of polyethylene, ob-
tained by simulations on 7 processors of an SGI Origin 2000 system (UNITE) for more than
one year. We will focus on the determination of characteristic length scales, particularly the
entanglement length, and try to gain insight in the origin of these length scales.
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5.2 Method

5.2.1 Coarse-grained interactions and uncrossability of chains

In the simulation a blob represents the center of mass of λ consecutive monomers. The fun-
damental difference with some other polymer simulation models, such as the FENE model of
Kremer et al., [66] is that λ may be chosen arbitrarily and is not determined afterwards by
a mapping procedure to relate the simulation results to experimental values. This is possible
because the interaction model is not fixed a priori, but derived without any adjustable param-
eters from short microscopic simulations of the material under consideration. The number
of monomers per blob is however not completely arbitrary. If spherical interactions are as-
sumed, λ should not be so large that the size of the blob exceeds the typical diameter of the
tube in the reptation picture. In that case, it would be impossible for the model to display a
tube of realistic proportions. For practical purposes, λ must not be too small either. In the
first place, much is gained if λ is as large as possible to allow for a large integration time step.
Secondly, λ must be large enough to be able to treat the complementary 3(λ −1) coordinates
per blob of the microscopic constituents as bath variables, i.e., to take their effects into ac-
count through random forces which perturb the time evolution of the blob positions. If the
random forces decorrelate much faster than the blob momenta, the random force correlations
may be represented by delta functions (Markov approximation) and the equations of motion
are of the simplest Langevin type:

M
d2Ri

dt2 = −∇iχ −Mξ
dRi

dt
+FR

i , (5.1)

where Ri is the position of blob i, M is its mass, and ξ is the blob friction frequency, related
to the random force FR through the fluctuation dissipation theorem. In Eq. (5.1) we have
implicitly assumed that the friction on each blob is isotropic and independent of the positions
of the other blobs, in which case the friction is a scalar quantity. In Appendix 5.A we describe
how this quantity can be calculated from short atomistic simulations. The free energy χ ,
which is the potential of mean force, can be calculated from

χ (Rn) = −kT lnPn (Rn) . (5.2)

Here Pn is the n-blob distribution function which is determined from the microscopic system
by averaging over the bath variables. It is assumed that this distribution can be factorized
into independent pairwise and angular parts. At first sight this assumption may seem rather
crude, and better methods to estimate the effective interactions are available, such as the
method described by McCoy an Curro, [78] who mapped explicit atom onto united atom
potentials. However, this method may run into problems if applied to polymers, because two
non-bonded blobs which are nevertheless part of the same chain are not independent entities;
the interactions between two such blobs are not determined by interactions between the atoms
of these blobs alone.1 Fortunately, the long time dynamics and rheology of polymer chains is
dominated not so much by the details of the interactions, but by the fact that chains can not
cross each other.

1 H. Fukunaga, personal communication.
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] Figure 5.1: The potential of mean force
between nonbonded (circles) and bonded
(squares) blobs. These potentials were ob-
tained from the distribution functions mea-
sured in atomistically detailed molecular
dynamics simulations of C120H242 at the
same temperature and density as the current
simulations. The solid lines are fits with
simple analytical functions, as described in
Chapter 4.

Now, in this work we will investigate polyethylene melts at a temperature of 450 K and
a constant density of 0.761 g/cm3. In Chapter 4 we argued that a suitable level of coarse-
graining for this material is λ = 20, which is well below any reported entanglement length. In
atomistic molecular dynamics simulations of a melt of C120H242 chains the blob distibution
functions were measured. From these we calculated the interaction potentials. The interac-
tions between pairs of bonded and pairs of nonbonded blobs are shown in Fig. 5.1. Because
the degree of coarse-graining is so high, the blobs are rather ‘empty’ and the interactions be-
tween blobs are very soft. Consequently, in the mesoscopic simulations based on the above
Langevin equation, without additional measures unphysical bond crossings will be probable.
To prevent this from happening, an uncrossability constraint is applied. The idea behind this
constraint is to consider the bonds between consecutive blobs to be elastic bands. As soon
as two of these elastic bands make contact, an ‘entanglement’ is created at the crossing po-
sition X which prevents the elastic bands from crossing. This is accomplished by defining
the attractive part of the potential between bonded blobs i and i + 1 to be a function of the
path length Li,i+1 of the bond, going from one blob (i) to the next (i+1) via the intermediate
entanglement:

Li,i+1 =
∣∣Ri −X

∣∣+ ∣∣X−Ri+1

∣∣ . (5.3)

See Fig. 5.2 for a sketch of this situation. The position of the entanglement is determined
by the requirement that there is always an equilibrium of forces at the entanglement. Of
course more than one entanglement per bond is allowed. Details about this and more about
the uncrossability constraint can be found in Chapter 4.

We stress that the entanglements are created and annihilated according to the dynamics of
the system itself and no network structure is imposed a priori. The uncrossability constraints
are called ‘entanglements’ for simplicity, but they are not the classic entanglements which
form a network of effective tubes and attribute to the long time stress. This work is therefore
conceptually very different from work of, e.g., Masubuchi et al. [76] who coarse-grained at
the level of segments between consecutive entanglements, therefore imposing a network of
primitive chains. In Subsec. 5.3.1 we will focus on the characteristics of the uncrossability
constraints.
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Figure 5.2: Sketch of two “entangled” parts
of chains. At an earlier time, the bonds be-
tween the two depicted pairs of blobs tried
to cross each other. This caused the un-
crossability constraint to insert an “entan-
glement” at the crossing point. Since then
the attractive part of the potential between
bonded blobs is a function of the path length
from blob i, via the entanglement at X, to
blob i+1.

R R
X

i i+1

Species N nchain L [nm]
〈
R2

g

〉
[nm2]

〈
R2

e

〉
[nm2]

C80 / B4 4 180 7.61 1.51 10.2
C120 / B6 6 120 7.61 2.51 16.3
C200 / B10 10 100 8.49 4.05 25.3
C400 / B20 20 80 9.93 9.05 54.9
C600 / B30 30 80 11.37 14.9 91.8
C800 / B40 40 80 12.51 21.6 132.2
C1000 / B50 50 80 13.48 27.2 167.3

Table 5.1: Polymer species, number of blobs N per chain, number of chains nchain, length L
of the simulation box, the mean square radius of gyration

〈
R2

g

〉
, and mean square end-to-end

distance
〈
R2

e

〉
of the systems studied.

5.2.2 Equilibration and characterization of the systems under
study

In this chapter we investigate melts of seven different chain lengths, ranging from C80H162
to C1000H2002, hereafter referred to as B4 to B50, after the number of blobs representing
one chain. An overview of the systems is given in Table 5.1. In order to avoid significant
interactions of a chain with its periodic images, the number of chains in each system was
chosen such that the length of the periodic simulation box was at least the root mean squared
end-to-end distance of a polymer chain. A similar criterion was adopted by Kremer and
Grest. [66] To check finite size effects, they analyzed a melt of FENE chains of length 200
(comparable to our B30) for two system sizes, one with 20 and one with 100 chains. Although
the static dimensions of the chains depended slightly on the system size, all dynamic results
for both system sizes were found to be the same within the statistical errors. We are therefore
confident that the sizes of the systems studied in this work are sufficiently large.
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Unlike microscopic chains, well-equilibrated initial configurations of mesoscopic chains
can be realized with comparative ease due to the softness of the interactions and the possi-
bility to relax the configurations before imposing the uncrossability constraint. Initial config-
urations of the chains were generated according to the distribution functions obtained from
microscopic simulations and were placed and oriented randomly in the simulation box. The
repulsive force between nonbonded blobs was initially set to 1/10th of its final value in order
to gently push blobs with large overlap apart, while allowing all bonds to cross each other.
After this initial homogenization, the nonbonded force was gradually increased to reach its
final value. The melts were then equilibrated for at least one rotational relaxation time. This
was possible because the longest relaxation times of crossing chains are much shorter than
those of non-crossing chains. Finally, the uncrossability constraint was switched on. The
number of entanglements was monitored and observed to reach an equilibrium value (in an
average sense) within a few nanoseconds for all systems. Non-diagonal components of the
stress tensor were also monitored and found to be zero on average.

To check whether the equilibration of the chain structure was successful at all relevant
length scales, the Rouse modes of the chains were studied. For a finite chain of length N
these are given by [13]

Xk =
1
N

N

∑
j=1

Ak jR j (k = 0, . . . ,N −1), (5.4)

where Ak j is defined as

Ak j = cos

[
kπ
N

(
j− 1

2

)]
. (5.5)

The zeroth Rouse mode is the position of the center of mass of the chain. All other modes
describe the internal configuration of the chain, mode number k describing a wavelength
corresponding to a subchain of N/k blobs. According to Rouse theory, the amplitudes should
obey the scaling relation〈

X2
k

〉
=

b2

8N sin2 ( kπ
2N

) . (5.6)

We calculated
〈
X2

k

〉 · 8N sin2
(

kπ
2N

)
for each chain length and mode number. According to

Eq. (5.6), for an ideal chain this should be constant and equal to the square of the statistical
segment length b. Our chains however are not ideal, mainly because of the angular potential
which gives them some stiffness. The stiffness will have the strongest effect on the smallest
length scales, but no effect on the very large length scales where ideal random walk statistics
should be obeyed. More importantly, if the systems are well-equilibrated, we expect that the
data of all the chains collapse onto one single curve if it is plotted against the natural scale
N/k. As can be seen in Fig. 5.3, this is indeed the case. From the limiting value we can
estimate the statistical segment length to be b2 ≈ 3.3 nm2. As can be seen in Table 5.1, the
mean square end-to-end distance and mean square radius of gyration of the longest chains
obey random walk statistics, i.e.,

〈
R2

e

〉
= Nb2 and

〈
R2

g

〉
= 1

6 Nb2. In view of the above, we
are confident that all starting configurations have relaxed sufficiently.
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Figure 5.3: Rouse amplitudes vs N/k for sev-
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5.3 Results

5.3.1 Entanglement characteristics

During the simulations the chains try to cross each other in which case the uncrossability
constraint creates entanglements. Entanglements are also annihilated because chains slip off
the ends of other chains, they unknot, or simply because chains move apart again. Obviously,
the number of entanglements is not constant but fluctuating in time. The long-time average
number of entanglements however was found to be constant and equal to 2.5 entanglements
per bond in all systems. Many of these entanglements were short-lived. Accordingly, only a
few contributed significantly to long time interactions between different chains and therefore
to the long time stress. To quantify this, we present in Fig. 5.4 the probability Page of an
entanglement to reach a certain ‘age’. Age is defined here as the time interval between the
creation and annihilation of a certain entanglement. There are two prominent features in the
plot of Page: (i) After a sharp initial drop the probability decreases exponentially with age.
From the slope in the semilogarithmic plot we derive a characteristic decay time of 230 ps.
(ii) Somewhat surprisingly, also at the long life times, all curves coincide. This proves that
even B6 behaves as a chain, not as a small molecule. Apparently the influence of the chain
ends on the life time of uncrossability constraints is very small.

We expect a larger influence of the chain ends on the effective number of entanglements
which do get old and contribute significantly to the long time stress. The calculation of the
number of such effective entanglements is however complicated by the fact that in deter-
mining the age we have disregarded the possibility that two entangled chains, due to some
fluctuation, move apart for a very short time after which they entangle again at approximately
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the same location. Although this would be the same entanglement effectively, it is treated as
a new entanglement in the calculation of Page. In this work we will not try to correct for this,
for instance by allowing two parts of chains to be separated for a specified maximum time
interval and maximum relative displacement, because new and non-trivial variables would
need to be introduced. Instead, we will calculate the effective number of entanglements from
the influence they have on the dynamic and rheological properties. In the following subsec-
tions we will focus on these properties and find that only one in every 15 entanglements will
be effective in creating a ‘tube’, i.e., we will find that the classic entanglement length of our
model polyethylene is Ne ≈ 6 blobs.

5.3.2 Slowing down of Rouse mode relaxations

In Sec. 5.2 we checked the equilibration of the chain structure by analyzing the Rouse mode
amplitudes, Eqs. (5.4) to (5.6). We will now focus on the time dependence of these Rouse
modes because they reveal the relaxation dynamics at different length scales. Within the
Rouse model, for ideal chains, each of the modes relaxes independently and exponentially
with a relaxation time τk,

Ck (t) ≡ 〈
Xk (t) ·Xk (0)

〉
/
〈
X2

k

〉
= exp

(−t/τk

)
, (5.7)

τ−1
k = 4W sin2

(
kπ
2N

)
, (5.8)

where the relaxation rate W is a characteristic frequency of the Rouse model and is given by:

W =
3kT

Mξb2 . (5.9)

For realistic polymer chains, however, it is not expected that the Rouse modes are the normal
modes (in a dynamic sense; the static cross-correlations are zero), because the nonbonded
interactions and uncrossability constraints modify the equations of motion and make them
highly nonlinear. [114, 126] As a consequence, the Rouse modes may no longer relax ex-
ponentially. As was already observed in other simulation work, [100–102, 126, 129] we find
that the Rouse mode autocorrelations of polymer chains can better be described by a stretched
exponential form,

Ck (t) = exp
[
−(t/τ∗k )βk

]
, (5.10)

where the relaxation times τ∗k and stretching parameters βk depend on mode number k and
on the chain length. The Rouse modes were measured and fitted to Eq. (5.10) by calculating
minus the natural logarithm of the normalized autocorrelations and plotting them on a double-
logarithmic scale. A typical example is given in Fig. 5.5, where this procedure has been
applied to several Rouse modes of the B30 system. Consistent with Eq. (5.10) straight lines
result, with a slope equal to βk and an intercept (at some time t > 0) proportional to 1/τ∗k . In
Fig. 5.6 we show the original data, together with the fits from Fig. 5.5, on a semilogarithmic
scale. Notice that the fits do well in describing the data and that the non-exponentiality of
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the data is strongest around k = 14. In Fig. 5.7 we have plotted βk for all chain lengths and
all mode numbers against the mode wavelenth N/k. The data more or less collapse on to the
same curve, at least for N > 6 and N/k smaller than about 6. At the smallest length scales βk
is approximately 0.7. Then a minimum of approximately 0.5 occurs around N/k ≈ 2, after
which βk increases again to a value of approximately 0.8 at the largest scale of each chain.

The non-exponential relaxation of the Rouse modes is not specific to our model. Shaf-
fer placed polymers on a lattice and applied uncrossability constraints. [126] He also found
deviations from exponential behavior, very similar to what we find. Shaffer interpreted the
devation of βk from unity to reflect the severity of kinetic constraints. He suggested that
the results may also be interpreted in the framework of the coupling model of Ngai and co-
workers, in which the degree of non-exponentiality is associated with the cooperativity that is
required for configurational relaxation in the presence of entanglement constraints. [88–90]
With these interpretations in mind, Fig. 5.7 suggests that the effect of kinetic constraints
and/or the required cooperativity is most severe around N/k ≈ 2. We will introduce a sep-
arate symbol for this length scale: Ns, where the ‘s’ stands for ‘slowing down’, because the
dynamics of the chain is strongly slowing down at this length scale. Notice that we do not
interpret this length scale as the entanglement length Ne from classic reptation theory.

The slowdown of dynamics at various length scales becomes clearly perceptible if we
analyze the Rouse mode relaxation times. Note that the parameter τ∗k is not very useful in
itself because the instant relaxation rate at any time t depends on all three t, τ∗k and βk. In
analogy with Shaffer’s work, we calculate the effective relaxation times as time integrals over
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the normalized relaxation functions. From Eq. (5.10) we find:

τeff
k =

∫ ∞

0
Ck (t)dt =

∫ ∞

0
exp
[
−(t/τ∗k )βk

]
dt =

τ∗k
βk

Γ
(
1/βk

)
, (5.11)

where Γ(x) is the gamma function. The corresponding effective Rouse rate is defined as

W eff
k =

[
4τeff

k sin2
(

kπ
2N

)]−1

, (5.12)

which, in the case of Rouse chains, is a constant and equal for all chain lengths. In Fig. 5.8(a)
we have plotted the effective Rouse rates for all chain lengths and all mode numbers against
the mode wavelength N/k. It is interesting to see that the data of each chain length follow
the same ‘universal’ curve until they depart to reach a plateau at a value which differs for
each chain length. The universal curve has the following characteristics:

1. Initially the effective Rouse rate is constant, which means that the effective relaxation
times scale like predicted in Eq. (5.8). This regime is very small, only up to about
1.5 blobs. In this respect we can say that only the very small length scales behave
Rouse-like.

2. Then there is a sharp drop in the effective Rouse rate. The curve has an apparent min-
imal slope of −2 in the neighbourhood of Ns. This means that the effective relaxation
times scale like τeff

k ∼ (N/k)4 in this regime.

3. A regime with slope −1 starts at about 1.5Ns and ends when a plateau is reached. The
effective relaxation times in this regime scale like τeff

k ∼ (N/k)3.

Both the second and third regimes are quite distinct from the predictions of both Rouse
(∼ N2/k2) and reptation (∼ N3/k2) models. We will return to this in the discussion. The oc-
currence of a plateau in the W eff

k data is in agreement with the reptation model although other
models which also predict a plateau cannot be ruled out, such as the generalized Rouse ap-
proach by Hess. [57] The original reptation theory predicts that the relaxation time of a Rouse
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Figure 5.8: Effective Rouse relaxation rates
(a) and terminal Rouse relaxation rates (b)
vs N/k for several values of k and N. The
lines in (a) show the scaling regimes τeff

k ∼
N4/k4 and τeff

k ∼ N3/k3. The lines in (b)
show the τ l

k ∼ N3.5/k2 scaling for scales
larger than Ne, in agreement with reptation
theory.
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mode k with N/k > Ne is enhanced by a factor 3N/Ne compared to the Rouse model, [30]
i.e., the plateau of Wk should decrease proportional to N−1. The plateau values in Fig. 5.8(a)
decrease somewhat faster, approximately with N−1.5. This can be explained by including
contour length fluctuations in the reptation theory. [30] The chain ends have a large effect on
the relaxation times in chains which are not far above the entanglement length, such as our
chains.

5.3.3 Disentanglement times

Contrary to what we would expect, the plateau in Fig. 5.8(a) is restricted to the first few
modes, even for the longer chains. The same observation was made by Shaffer. [126] We
should keep in mind, however, that we have calculated effective relaxation times, Eq. (5.11),
which are largely dominated by the relaxations at short times, where the correlations still
differ appreciably from zero. If we want to obtain information about their long time behavior,
we are forced to investigate the correlation functions themselves. According to reptation
theory, the Rouse mode correlation functions decay exponentially, with characteristic times
τk ∼ N3/k2, at times larger than the time τr it takes for the chain to relax along its own
primitive path, and for values of k such that N/k > Ne. In the original application of the
reptation model τr was assumed to be the Rouse time τR of a hypothetical chain which does
not feel the tube constraints. We shall refrain from this interpretation and continue to use
τr for the time when reptation sets in. Since at times larger than the disentanglement time
τd each chain will have found a completely new environment, the Rouse mode correlation
functions will decay exponentially at these times, and consequently τr ≤ τd . The Rouse
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mode correlation functions then behave according to

Ck (t) =

{
exp
[
−(t/τ∗k

)βk
]

for t < τr,

exp
[−(t/τ l

k

)]
for t > τr,

(5.13)

where τ l
k is the terminal (long time) relaxation time. The exponential decay time of the

first mode is the above mentioned disentanglement time, i.e., τ l
1 = τd . Ck(t) then decays as

schematically depicted in Fig. 5.9. Notice that at time t = τd , C1(t) has decayed to 1/e of its
original value at t = 0. Ck(t) with mode numbers k larger than 1 decay faster.

We expect that for the shorter chains, although already strongly influenced by entangle-
ments, the primitive paths are still too short for reptation to be applicable, and that conse-
quently ”τr” ≈ τd . Only for very long chains will τr substantially differ from τd . In Fig.
5.10 we investigate the relaxation of the first Rouse mode of each chain length. The data
for N < 20 clearly display a crossover from a short time relaxation with β1 ≈ 0.8 to a long
time exponential relaxation. For each of these chain lengths, the two asymptotes intersect
at − lnC1 (t) = 1 (dashed line in Fig. 5.10), i.e., when the normalized autocorrelation has
decayed to 1/e. So indeed we find that for these chain lengths we have τr = τd , i.e., the
chain has never completely relaxed along its primitive path until a new environment is found.
For N ≥ 6 times τr are certainly larger than the Rouse times τR of unentangled chains. Val-
ues of τR can be estimated from the work in Chapter 4 where we investigated chains which
were able to cross each other. The effective Rouse rate of large scale modes was found to be
W ≈ 1.2 ns−1. This yields estimates of τR listed in the second column of Table 5.2. Only for
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N τR k=1 2 3 4 5 6 7 8 9 10 15 19 29 39 49

4 1.42 1.62 0.29 0.10
6 3.10 5.67 1.05 0.34 0.14 0.09

10 8.5 25.3 4.99 1.83 0.84 0.39 0.21 0.15 0.11 0.10
20 34 140 38 16.6 8.0 3.9 2.7 1.68 1.02 0.61 0.47 0.13 0.09
30 76 559 162 52 24.0 11.6 10.2 5.9 3.4 2.5 1.86 0.49 0.21 0.10
40 135 1687 359 121 61 27.3 20.5 12.7 9.1 5.6 5.3 1.59 0.57 0.14 0.09
50 211 3367 925 346 128 73 34 23.4 17.8 10.9 7.2 2.37 1.33 0.27 0.11 0.09

Table 5.2: Calculated Rouse times τR (ns) of crossing chains and effective relaxation times
τeff

k (ns) of non-crossing chains for various mode numbers k.

Figure 5.11: Estimated disentanglement
times τd (filled circles) and effective relax-
ation times (open circles) as estimated by
Eq. (5.11) vs molecular weight Mw. The
solid line is a guide to the eye.
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N = 4 there is agreement between τr and τR. For both N = 6 and N = 10 the non-exponential
decay persists much longer than τR. We assume that the same will hold for 20 ≤ N ≤ 50,
although no rigorous proof can be given, because the exponential time regime could not be
reached. Still, all these chain lengths show the same stretching parameter, β1 = 0.8 (solid
lines in Fig. 5.10). A deviation is visible in the data of the B40 system. Because this deviation
is not visible when N = 30 nor when N = 50, we expect that it is incidental and will disappear
after longer averaging. An upper limit of τd can be estimated by extrapolating − lnC1 (t) up
to the time where it is equal to 1 (see Fig. 5.9). Since our longest chain length is only about
8 times the entanglement length τr will not be very different from τd and consequently the
real disentanglement time will by very close to this estimate. The scaling of the estimated
τd with molecular weight is investigated in Fig. 5.11 (filled circles). Two regimes can be
distinguished, with scaling exponents 2.8 and 3.5 respectively. The latter value is markedly
larger than the pure reptation prediction of 3, but in agreement with the theory if contour
length fluctuations are taken into account.
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Figure 5.12: Relaxation of modes k = 1, 2,
3, and 4 for N = 10 (symbols). The data is
scaled in the same way as in Fig. 5.5. Solid
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laxation regimes t < τr and t > τr respec-
tively. The horizontal line indicates where
Ck(t) = 1/e, the vertical dot-dashed line is
at t = τr.

Next we investigate the long time relaxation of intermediate modes. A typical plot is given
in Fig. 5.12 where k = 1, 2, 3, and 4 results of the B10 system are shown. Although statistical
uncertainties arise in the data when Ck(t) ≈ 0, we clearly find that for each mode k > 1 the
non-exponential behavior persists far beyond the time when Ck(t) = 1/e. We are unable to
follow the relaxation into the exponential regime, but we assume that the non-exponential
behavior persists up to τr, as was stated in Eq. (5.13). The terminal relaxation time τ l

k of
Rouse mode k can be derived from known τ∗k and βk data by equating the two regimes in Eq.
(5.13) at t = τr, resulting in:

τ l
k = τr

(
τ∗k
τr

)βk

. (5.14)

The reptation scaling τk ∼ N3/k2 must be valid in the regime t > τr. This is checked in Fig.
5.8(b), where we plot the Rouse mode relaxation rates based upon the terminal relaxation
times. Indeed, a broad reptation-like plateau is observed for each chain length if N/k > Ne ≈
6. A small dip occurs at scales below the entanglement length Ne, with a minimum around
Ns ≈ 2, consistent with the observations made before on the stretching parameter βk. Contrary
to Fig. 5.8(a), the Rouse rates do not converge to some universal curve at the smallest scales.
This indicates that Eq. (5.13) does not hold for scales far below Ne. This will have no practical
consequences in future applications of Eq. (5.13), however, because the correlation functions
of these smallest scale modes are completely negligible in the time regime t > τr.

Effective relaxation times can be calculated again as integrals over Ck (t), but now in two
parts, one before τr and one after. These effective relaxation times are given in Table 5.2 and
were actually used to calculate the effective Rouse rates in Fig. 5.8(a). It should be noted,
that these relaxation rates are essentially equal to those calculated with Eq. (5.11) for mode
numbers two and higher, because the contribution to the integral for times t > τr is negligibly
small. Only the effective relaxation time of the first mode is somewhat overestimated by Eq.
(5.11), as can be seen in Fig. 5.11.
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5.3.4 Slowing down of diffusion

In the previous subsections we have analyzed the internal relaxations of the polymer chains.
Now we will investigate the mobility of blobs and centers of mass. Before we do this, we
will summarize the reptation model predictions. In the reptation model the effects of the sur-
rounding chains on the dynamics of a polymer chain are incorporated effectively by forcing
a Rouse chain to move inside a tube formed by entanglements with other chains. A constant
friction with the background and no other constraints besides the tube are assumed. At short
times, a blob doesn’t know about any tube constraints. The mean square displacement of a
blob, defined as

g(t) =
1
N

N

∑
i=1

〈
[Ri (t)−Ri (0)]2

〉
, (5.15)

will therefore behave Rouse-like and scale like t1/2. (We note that for even shorter times,
shorter than the fastest relaxation time of the chain τ0, g(t) is proportional to t.) When the
blob has moved a distance comparable to the tube diameter, the only way for the chain to
relax further is along the primitive path. This is supposed to happen at the entanglement
time τe. The chain next moves, still in a Rouse-like fashion, but now along a quasi one-
dimensional path, leading to the famous t1/4 power law for the mean square displacement of
the blobs. After a certain time τr the chain has relaxed along its tube. In the reptation model
this time is the Rouse time τR. Next, assuming that the tube does not change appreciably, an
overal diffusion along the tube is predicted, leading to a second t1/2 regime. Finally, after the
disentanglement time τd , the chain has managed to escape its old tube and create a new one,
and the blobs start to diffuse.

It is generally believed now that the reptation model, in its essentials, correctly picks up
the physical behavior of polymer melts. This will be confirmed in the following subsections
where we will show that ‘coarse’ quantities, such as the shear relaxation modulus, can well
be described by the reptation model. The constant friction approximation, however, is too
strict. In reality, as we have seen in the previous subsections, an increasing effective friction
is associated with increasing length scales. The increase is strongest around Ns. Because
Ns < Ne we expect that the blobs effectively slow down even before they have moved a tube
diameter distance. The typical time scale τs at which this may happen can be estimated from
Fig. 5.8(a) and Eq. (5.12) by assuming it to be the effective relaxation time of a subchain
of length Ns. This yields a ‘slowing down time’ τs ≈ 0.47 ns. In Fig. 5.13, the blob mean
square displacement of several chain lengths is plotted against time. Although for N ≥ 20
we did not reach the diffusion limit, it is clear that longer chains are increasingly slowed
down. For B50 an effective minimal slope of about 0.4 is measured. Perhaps less clear is the
onset of this regime, which agrees with the predicted slowing down time τs. The preceding
regime, where normal Rouse behavior (g(t) ∼ t1/2) is observed, turns out to be quite narrow,
however. This is a consequence of the fact that we have coarse-grained relatively far, making
the fastest relaxation time of the chain come close to the slowing down time τs. If we had
coarse-grained even further, combining 40 instead of 20 monomers into one blob, this t1/2

regime would not have been observed at all. The fastest relaxation time, according to Eq.
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Figure 5.13: Blob mean square displace-
ment g(t) vs t averaged over all blobs for
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0 . The slowing down
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(5.12), is given by:

τCG
0 = τeff

N−1 =
[

4W eff
N−1 sin2

(
(N −1)π

2N

)]−1

≈
[
4W eff

N−1

]−1
, (5.16)

where we have added the superscript ‘CG’ to indicate that it depends on the level of coarse-
graining. The approximation in Eq. (5.16) is valid in case N is large compared to unity.
From Fig. 5.8(a) we estimate: W eff

N−1 ≈ 2.8 ns−1, which yields τCG
0 ≈ 0.09 ns. This is in good

agreement with the transition from t1 to t1/2, as observed in Fig. 5.13.
The observed minimal slope of 0.4 is not as low as the reptation prediction of 0.25. There

are two reasons, which are both related to averaging. First, in going from the atomistic
to the blob level we average over some of the atomic movement. Since the mean square
displacement of a blob is always less than the mean square displacement of a more detailed
particle, but relatively larger differences occur at shorter times, the scaling laws of the blobs
are less pronounced than one would expect for more detailed particles. [96] Secondly, we have
averaged over all the blobs. It is well known that, because of contour length fluctuations, the
entanglement constraints are more easily released at the chain ends than at the inner section of
a chain. This was shown in simulations of the FENE polymer model by Kremer and Grest. [66]
The pure reptation result will only hold for very long chains where the influence of the chain
ends is relatively unimportant. Recently, Pütz et al. performed simulations of up to 10000
beads per chain, in which case a minimal slope of 0.26 was observed with great clarity. [107]
Our chain lengths are clearly not yet in this long chain limit.

More evidence for the existence of the slowing down length Ns can be found in the molec-
ular weight dependence of the self-diffusion coefficient D. In Fig. 5.14 results by several
authors, who performed simulations of n-alkanes and polyethylenes, are combined. The
open circles are constant density (ρ = 0.766 g/cm3) simulation results of C6 to C66 alkanes
at T = 448 K by Mondello et al. [82, 83] The open square is a constant density (ρ = 0.777
g/cm3) simulation result of C100 by Paul et al. [100] The latter has been corrected from
T = 509 to 450 K, in the same way as described in Ref. [100] by using the result for the tem-
perature dependence of the friction as obtained from an analysis of a C90 system by Pearson
et al., ξ ∼ exp [1326/(T −149)]. [106] The closed circles are results from this work, the cal-
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Figure 5.14: Diffusion coefficient D vs
molecular weight Mw for polyethylene from
different simulation studies (open sym-
bols) and experiment (long dashed line)
compared to the present simulation results
(closed circles). All simulations were car-
ried out at constant density. The crossover
between two scaling regimes is indicated by
the arrow labelled with Ms.
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culation of which will be explained further on. The diffusion coefficient scales approximately
like M−2

w for the larger molecular weights. The low molecular weight data of Mondello et
al. is more or less consistent with M−1

w . We expect that the agreement with the Rouse model
prediction is only fortituous in this regime where chain end effects dominate, as was shown
by Harmandaris et al. [51, 52] Nevertheless, the crossing over between these two regimes
occurs at a molecular weight which is found to correspond well to the slowing down length,
Ms = NsM ≈ 560 g/mol. Notice that all calculations were performed at approximately the
same density, therefore ruling out the possibility that the increase in the effective friction is a
density effect.

Pearson et al. have measured D in alkane and polyethylene melts at T = 450 K. [106]
They found that the entire range from Mw = 600 to 120000 follow a power law

Dexp = 1.65/M1.98
w (cm2/s) (5.17)

This fit is also plotted in Fig. 5.14 (dashed line). It is important to note that the experimental
density is not constant, but increasing with molecular weight. However, the experimental
density levels off to a value of 0.766 g/cm3 relatively fast; from Mw = 600 onward the increase
is less than 5 percent. [106] We can therefore rule out density effects to explain the scaling
in this experimental range, and the results can directly be compared with constant density
simulations. It is clear from Fig. 5.14 that the simulation results agree well with Eq. (5.17).
Below Mw = 600 there is a large increase in the experimental density, making the effective
friction subject to density effects. This explains why the experimental scaling in this regime
does not agree with constant density simulation results, such as those of Mondello et al.
[82, 83]

Pearson et al. corrected for the increase in friction factor in order to effectively keep the
same distance from the glass transition temperature. He then observed a transition in the
scaling of D at a molecular weight which was more in agreement with the entanglement
weight Me from rheological measurements. [106] In this work, however, we put ourselves to
the viewpoint that the remaining increase of friction at constant density is a physical effect
(we will not try to analyze whether it is a free volume effect or otherwise) that must be
reproduced by any realistic simulation model. Indeed, the experimental data is reproduced,
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Figure 5.15: Center of mass mean square
displacement, scaled such as to represent a
time-dependent diffusion coefficient D(t),
Eq. (5.19). The dashed lines show the ex-
trapolations to the disentanglement times τd
(arrows). The symbols are the same as in
Fig. 5.13.

and we do not see a transition at Me. In most other constant density simulation work the
transition in D is wrongfully interpreted as the entanglement molecular weight, which may
explain some of the discrepancies that arise when comparing with rheology. We will return
to this in the discussion.

Now we will explain how the diffusion coefficients were calculated. To this end we will
define the mean square displacement of the center of mass Rcm of a chain:

gcm (t) =
〈
[Rcm (t)−Rcm (0)]2

〉
. (5.18)

According to the Rouse model, gcm (t) = 6Dt for all times and D∼N−1. A real chain however
will be severely hindered by the interactions with surrounding chains, leading to subdiffusive
behavior. According to the reptation model, gcm (t) ∼ t up to the entanglement time τe,
followed by gcm (t) ∼ t1/2 up to τr (= τR). Subsequently the chain diffuses along the quasi-
one dimensional Gaussian tube contour which results in three dimensional diffusive motion of
its center of mass with D ∼ N−2. We generalize the diffusion coefficient to a time-dependent
diffusion coefficient, according to

D(t) = gcm (t)/6t, (5.19)

with limiting value D = limt→∞ D(t). The deviation from the Rouse model becomes most
distinct if we plot ND(t) against correlation time. This is shown in Fig. 5.15. If the Rouse
model were valid, all data would be constant and fall on top of each other. This is clearly not
the case; subdiffusive behavior is observed, and it apparently sets in even before τs, which
was also observed in the work of Kremer. [66] The early subdiffusive behavior occurs for
all chain lengths, including chains which are shorter than the entanglement length. This can
be explained as a “correlation hole” effect in the polymer mode-coupling (PMC) theory of
Schweizer. [122] In this theory an explicit nonlinear coupling of the collective fluid density
fluctuations with the segmental density field of a probe (Rouse) polymer is introduced. The
combined effect of chain connectivity and the correlation hole (induced by excluded volume
interactions of the probe chain with the polymer matrix) cause the effective intermolecular
interactions to be very long ranged, on the order of the radius of gyration of the polymer
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chain. This leads to a slow center of mass frictional memory decay and to subdiffusive
behavior of gcm (t). In fact, PMC theory predicts anomalously slow short time diffusion
without a priori introducing the phenomenological tube concept. For relatively short times
and chain lengths PMC theory explains the observed subdiffusive behavior well. For very
long chains gcm (t) ∼ t9/16 is predicted, close to the reptation result. It will therefore be very
difficult to discriminate between these theories by analyzing mean square displacement data.

In Fig. 5.15, the minimal slope of gcm (t) is observed to decrease with increasing chain
length. However, even for our largest chain lengths the t1/2 regime of the reptation model
is not strictly followed (nor the t9/16 regime of PMC theory). For the chain lengths studied
here the picture of a chain diffusing freely along a Gaussian primitive path is too strict and
only some broad crossover to diffusion with an averaged slope (0.7 for B50) remains. As said
before, only the chain lengths N < 20 actually reached the diffusive regime. It is clearly seen
that for these chain lengths the transitions from subdiffusive to diffusive behavior (horizontal
lines in Fig. 5.15) occur at the calculated times τr (arrows in Fig. 5.15), where the Rouse
modes crossover from non-exponential to exponential relaxation behavior. For the other chain
lengths (20 ≤ N ≤ 50), we have assumed that the crossover occurs at τr, which we have put
equal to the estimated τd values. This is how we obtained the diffusion coefficients D, which
by the nature of the approximation may be slightly underestimated.

5.3.5 Entanglement time from shear relaxation

We will now turn our attention to the rheologic properties of polymer melts. Much theoretical
and simulation effort has been spent to predict or reproduce the zero shear relaxation modulus
G(t), which measures the relaxation of stress after applying a small step shear strain. Exper-
imentally, its Fourier transform is measured by applying small oscillatory shear, yielding the
storage and loss moduli, G′ (ω) and G′′ (ω). A prominent feature of viscoelastic liquids is
the plateau that appears in G(t), signifying the elastic part of the relaxation behavior that sets
in after a liquid-like initial relaxation. The initial relaxation is generally believed to more or
less follow the Rouse model, [30]

G(t) =
ckT
N

N−1

∑
k=1

exp
(−2t/τk

)
, (5.20)

where c is the number concentration of blobs. The crossover time between the Rouse and the
plateau regime is identified as the entanglement time τe. In the reptation picture, the beads of
the chain hit the tube wall at this time. In most simulation work, however, it has proved to be
difficult to directly observe a plateau in G(t).

The shear relaxation modulus was determined by autocorrelating non-diagonal elements
of the stress tensor, as explained in Sec. 4.5.4. The result for the B4 system is shown in Fig.
5.16. Because the measuring time was finite, scattering of the data occurs at the largest
correlation times where the relaxation modulus is close to zero. To assess the proximity to
zero of the scattered data on a logarithmic scale, the positive data is represented by open
circles and the negative data by closed circles. Where the number of open and closed circles
are exactly balanced, the shear relaxation modulus is expected to be zero. The reader should
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Figure 5.16: Shear relaxation modulus of
the B4 system. Absolute values of negative
data are represented by filled circles. The
long dashed line is the Rouse model predic-
tion, Eq. (5.20).

be aware, however, that the closed circles are plotted in front of the open circles, which is
why the closed circles may appear to dominate the open circles. Note that no effect is seen
at the previously found slowing down time, τs ≈ 0.47 ns. In fact no entanglement effect is
seen at all, and the data can very well be described by the Rouse model result, Eq. (5.20)
and dashed line in Fig. 5.16. Here we replaced τk with the measured effective relaxation
time τeff

k , Eq. (5.11). In Fig. 5.17 we present the results for the systems with chain lengths
6 ≤ N ≤ 50, in the same way as Fig. 5.16 (except for the solid lines; these will be explained
later). Notice that already for B6 a hump emerges after t ≈ 6 ns which splits off the Rouse
prediction (dashed line). In Chapter 4, we attributed this to a very slow relaxation of the
interchain stress, i.e., the hump indicates that we are in the transition region from unentangled
to entangled dynamics. If we look at the other results in Fig. 5.17, we can observe how the
hump evolves with increasing chain length. Although the data for N = 20 and 30 may not
be regarded conclusive (some oscillations remain), a rubbery plateau is observed for the two
longest chain lengths studied, with hardly any negative data remaining.

Because the onset of entanglement effects is found in the B6 system, we estimate the
entanglement length to be Ne ≈ 6. Also, we assume that the entanglement time is around the
time at which the hump emerges: τe ≈ 6 ns. This entanglement time seems to be reasonable
for N > 6 as well (arrows in Fig. 5.17). The estimates of entanglement time and length
are internally consistent if τe is interpreted as the relaxation time of a chain of length Ne:
τeff

1 (Ne) ≈ 5.7 ns from Fig. 5.8(a). It is also very important that they are consistent with
experimental results. It is encouraging to see that an entanglement molecular weight Me =
2000 is predicted from neutron spin echo experiments on polyethylene by Richter et al. and
Schleger et al., [114, 120] corresponding to N = 7 blobs. Also, they predict an entanglement
time of τe ≈ 5 ns at the slightly higher temperature of 509 K, in very good agreement with our
observations. Most estimates of Ne from rheology are based on the magnitude of the plateau
modulus instead of the onset of entanglement effects in G(t). In the next subsection we will
determine the value of the plateau modulus and compare with rheological experiments.
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Figure 5.17: Shear relaxation modulus of the systems with 6 ≤ N ≤ 50, represented in the
same way as Fig. 5.16. Arrows indicate the estimated entanglement time τe. The solid lines
are predictions from a mixed Rouse and reptation approach, Eq. (5.24).
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5.3.6 Entanglement length from plateau modulus and viscosity

Let us consider the shear relaxation modulus G(t) again (Fig. 5.17). For short times, t < τe,
the chain does not feel the entanglement constraints and behaves like a three dimensional
Rouse chain. It is usually assumed that the chains are Gaussian on all scales, i.e., that Eq.
(5.6) applies, and that the modes relax exponentially at all times, together leading to Eq.
(5.20). Real chains, as we have seen, behave differently. The agreement may be improved by
explicitly accounting for the measured mode amplitudes, relaxation times, and stretching pa-
rameters. According to Eq. (2.54), leaving the equilibrium mode amplitudes and relaxations
explicit, we find:

G(t) =
c
N

E
N−1

∑
k=1

〈
X2

k

〉
sin2
(

kπ
2N

)
exp

[
−2

(
t
τ∗k

)βk
]

(t < τe) , (5.21)

where E is proportional to the (entropic) spring constant. The value of E is unknown, but we
assume that the pure Rouse model result, Eq. (5.20), is valid for t approaching zero. This
leads to

E = (N −1)kT

[
N−1

∑
k=1

〈
X2

k

〉
sin2
(

kπ
2N

)]−1

. (5.22)

For times t > τe the entanglement constraints are felt. According to the pure reptation model,
the stress at time t is proportional to the fraction Ψ(t) of the original tube that is still part of
the tube at time t:

Ψ(t) = ∑
k=odd

8
k2π2 exp

(
−k2t

τd

)
. (5.23)

According to Eq. (5.23) a well-defined plateau will emerge in the shear relaxation modulus
if the chains are long enough. The summation is done over all odd k modes, usually with
no upper limit. However, we expect that in reality only the first kmax ≈ int(N/Ne) modes
will contribute to the reptational part of the stress relaxation. The remaining modes corre-
spond to scales which are smaller than the entanglement length, and are therefore expected to
contribute to the stress relaxation in a Rouse-like fashion. Combining Eqs. (5.21) to (5.23),
explicitly accounting for the measured relaxation times and stretching parameters in the rep-
tational part also, we obtain the following prediction for the stress relaxation:

G(t) = F
kmax

∑
k=odd

8
k2π2 exp

[
−
(

t
τ∗k

)βk
]

+
c
N

E
N−1

∑
k=kmax+1

〈
X2

k

〉
sin2
(

kπ
2N

)
exp

[
−2

(
t
τ∗k

)βk
]

(t > τe) , (5.24)

where βk must be replaced with 1 and τ∗k replaced with τ l
k if t > τr. The constant F is

determined in the usual way, by equating G(t) right before [Eqs. (5.21) and (5.22)] and after
[Eq. (5.24)] τe. The predicted results are shown as solid lines in Fig. 5.17. Although the
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Figure 5.18: Plateau modulus G0
N , esti-

mated from the simulation data (squares)
and the mixed Rouse and reptation pre-
diction, Eq. (5.24) (circles) vs molecular
weight Mw. The dashed line is a guide to
the eye.
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simulation data cannot rigourously proof the validity of Eq. (5.24), the agreement is found to
be rather good. The simulation results of B20 and B50 are somewhat too high, but we expect
that longer averaging would have yielded results which are closer to the predicted lines.

The plateau modulus G0
N can be estimated from the value of the shear relaxation modulus

at the entanglement time, G0
N ≈ G(t = τe). The estimated plateau values are plotted against

molecular weight in Fig. 5.18. Clearly, the crossover from unentangled to entangled dynam-
ics is made within the range of chain lengths studied: after the entanglement molecular weight
of Me ≈ 1700 the plateau modulus quickly rises until it levels off to a molecular weight inde-
pendent value which is in good agreement with the experimental value of 2.4 MPa. [40] To
our knowledge this is the first time that the experimental plateau modulus of a specific poly-
mer species has been reproduced with such good agreement by means of molecular dynamics
simulations.

In rheological practice, the entanglement molecular weight is calculated from the plateau
modulus: [30]

Me,p =
4
5

ρRT
G0

N

, (5.25)

in which R is the universal gas constant. We have added a subscript p to indicate that Me is
estimated from the plateau modulus. Using this, we find Me,p ≈ 960 (Ne,p ≈ 3.4), which is
between our previous estimate Me ≈ 1700 from the onset of entanglement effects in the shear
relaxation modulus, and the slowing down molecular weight Ms ≈ 560 from the Rouse mode
and mean square displacement analysis. We will return to this in the discussion.

The zero-shear viscosity can be calculated by integration of the shear relaxation modu-
lus,2

η =
∫ ∞

0
G(t)dt. (5.26)

Direct integration of the measured G(t) data was possible for N < 20. A comparison between

2 Analogous to Chapter 3 a small amount of 1.5 cP was added to account for the difference between the initial
shear relaxation of atomistically detailed and coarse-grained systems.
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N dNSE G0
N ηRouse η ηexp D Dexp

[nm] [MPa] [Pa s] [Pa s] [Pa s] [10−6 cm2/s] [10−6 cm2/s]

4 0.004 0.005 (0.005) 0.006 1.8 1.5
6 0.35 0.008 0.011 (0.011) 0.013 0.90 0.68

10 0.91 0.019 0.033 (0.032) 0.034 0.30 0.25
20 6.9±0.9 1.55 0.056 0.20 0.17 0.084 0.063
30 5.3±0.4 1.84 0.14 0.88 0.73 0.036 0.028
40 5.2±0.5 2.18 0.30 2.95 2.09 0.018 0.016
50 5.8±0.5 2.19 0.51 5.98 4.68 0.011 0.010

Exp. 5.3±0.7 2.4

Table 5.3: Tube diameter dNSE from fits to the dynamic structure factor, plateau modulus
G0

N , viscosity ηRouse based on the Rouse expression, Eq. (5.20), and viscosity η based on
a mixed Rouse-reptation approach, Eq. (5.24) (viscosities determined by direct integration
of G(t) are between brackets), experimental viscosity ηexp, [106] diffusion coefficient D
from the simulation, and experimental diffusion coefficient Dexp. [106] The last row gives
experimental values for dNSE for chain lengths B40 to B90, [140] and the limiting plateau
modulus for very long chains. [40]

the viscosities predicted by the Rouse approach, Eq. (5.20), and the mixed Rouse-reptation
approach, Eq. (5.24), learns that the latter does a much better job in reproducing these values
(see Table 5.3). We will therefore rely on the mixed approach to predict the viscosities of
the chain lengths N ≥ 20. The results are shown in Fig. 5.19 (filled circles). Results by
several other authors are given in Fig. 5.19 as well. The open circles are the constant density
simulation results of C6 to C66 alkanes by Mondello et al. [82, 83] The open square is a
constant density (ρ = 0.75 g/cm3) non-equilibrium dynamics simulation result of C100 by
Moore et al. [84] Here we used their preliminary value of about 7.2 cP, obtained at the lowest
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Figure 5.19: The zero shear viscosity η0 vs
molecular weight Mw for polyethylene from
different simulation studies (open sym-
bols) and experiment (long dashed lines)
compared to the present simulation results
(closed circles). All simulations were car-
ried out at constant density. The weights
corresponding to different length scales are
indicated by arrows.

98



5. TIME AND LENGTH SCALES OF COARSE-GRAINED POLYMER MELTS

shear rate of γ̇ = 1.5 ·108 s−1, which is expected to be in the linear regime. Pearson et al. [106]
found that at low molecular weight, Mw < Mc ≈ 5000, the viscosity is well described by the
power law

η = 2.1 ·10−5M1.8
w (cP), (5.27)

while at high molecular weight, Mw > Mc, the Mw dependence is much stronger:

η = 3.76 ·10−12M3.64
w (cP). (5.28)

The crossover between the two regimes is determined by the critical molecular weight Mc,
which, like the entanglement molecular weight Me, is characteristic of the polymer species.
We can understand the origin of Mc by noticing that at this molecular weight the plateau has
almost fully developed, while at the same time τd has grown large enough for the reptation
part to dominate the Rouse part of the integral of G(t). However, the role of Mc may not be as
fundamental as that of Me: no characteristic time scale is connected with Mc and it is always
equal to “a few times” Me, enough for the entanglement effects to fully mature. For a more
in-depth analysis of Mc the reader is referred to Ref. [40].

Pearson’s fits, Eqs. (5.27) and (5.28), are plotted as dashed lines in Fig. 5.19. Notice the
agreement between our simulation predictions and experiment. The results of Mondello et
al. [82,83] show an initial regime where the viscosity scales with Mw, in agreement with pure
Rouse model predictions. The crossing over to the M1.8

w regime occurs at the slowing down
molecular weight Ms, i.e., at the same weight as where a crossing occurred in the scaling
of the diffusion coefficient. Again, the results of Mondello et al. do not agree with those
of Pearson et al. because they refer to different densities. Experimentally, there is a large
increase in density in the region Mw < Ms, causing a faster than Rouse scaling of the viscosity.
Trying to validate reptation theory, Pearson corrected the viscosity to the value it would have
had if the friction factor had been constant (long chain limit). In that case the M1.8

w region
disappeared and a new Rouse-like region was observed up to the critical molecular weight
Mc. Given the agreement between our results and the experimental viscosities, and given the
fact that above Mw ≈ 1000 the density hardly changes, we can only conclude that Pearson’s
analysis must be on the wrong track.

5.3.7 Tube diameter from dynamic structure factor

The coherent dynamic structure factor can be measured by means of neutron spin echo spec-
troscopy. In the experiments conducted by Richter and coworkers, protonated chains were
dissolved in a deuterated matrix. [109, 111, 112, 114, 120] Because the scattering lengths of
protons and deuterons differ, they were able to extract the single chain coherent dynamic
structure factor,

S (q, t) =
1

Nsc

Nsc

∑
i=1

Nsc

∑
j=1

〈
exp
{

iq ·
[
ri (t)− r j (0)

]}〉
, (5.29)

where q is the scattering wave vector and the double summation is over all Nsc scattering
centers of one chain. Because our chains have been coarse-grained, detailed microscopic
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information about positions of the hydrogens is lost. However, it was shown in Chapter
4 that, to a good approximation, the blob positions Ri can still be used in Eq. (5.29) to
calculate the microscopic dynamic structure factor, provided the wavelength of the scattering
wave vector is large compared to the bond length of bonded blobs. As the maximum bond
length is of the order of 2 nm, q will have to be small compared to 3 nm−1. The results for
five different scattering vectors, 0.55 ≤ q ≤ 2.2 nm−1, are shown in Fig. 5.20 (symbols) for
all chain lengths N ≥ 6. We will now investigate to what extent this data is compatible with
the Rouse and reptation models.

It was shown in Chapter 4 that the simulation results of the B6 system do not agree with
the pure Rouse model predictions. However, one might expect that the agreement improves
if the mean square displacement of the center of mass and the mode amplitudes, relaxation
times, and stretching parameters are taken explicitly into account, as we have done in the
previous subsection. Inverting Eq. (5.4) and inserting in Eq. (5.29) yields:

S (q, t) =
1
N

exp

{
−q2

6

〈
[Rcm (t)−Rcm (0)]2

〉}
×
{

N

∑
i=1

N

∑
j=1

exp

[
−2q2

3

N−1

∑
k=1

〈
X2

k

〉([
Aki −Ak j

]2
+2AkiAk j

[
1−Ck (t)

])]}
,

(5.30)

where it is assumed that the blob displacements are Gaussianly distributed and the Rouse
modes remain orthogonal. Aki and Ck (t) are defined by Eqs. (5.5) and (5.13). The results
from Eq. (5.30) are shown as dashed lines in Fig. 5.20. For all chain lengths, the fit for the
smallest wave vector (q = 0.55 nm−1) is reasonably good. This wave vector is always small
compared to 2π/Rg, so only the overall center of mass motion is probed. Because this motion
is explicitly introduced in Eq. (5.30), the good agreement comes as no surprise. The other
wave vector results are in less good agreement. The modified Rouse prediction is observed
to always underestimate the simulation results. This observation is in agreement with recent
simulation and neutron spin echo work on unentangled 1,4-polybutadiene. [129] Smith et al.
compared the dynamic structure factor results with a Rouse expression, modified in the same
spirit as Eq. (5.30). They found that the failure of the Rouse model does not lie primarily in
the predicted mode amplitudes or relaxation times, yet in the non-Gaussianity of segmental
displacements. The non-Gaussianity is caused by chain-stiffness at the smallest scales and,
more importantly, by intermolecular interactions at larger scales.

Above a certain chain length, the effects of intermolecular interactions become dominant
in the form of entanglements. De Gennes [27] has formulated an expression for the single
chain coherent dynamic structure factor, valid for times beyond τe and wave vectors much
larger than the inverse end-to-end distance, i.e., qRe � 1:

S (q, t)
S (q,0)

=
{

1− exp
[
−(qd/6)2

]}
exp
(
t/τloc

)
erfc
(√

t/τloc

)
+exp

[
−(qd/6)2

] kmax

∑
k=1

Asin2 (αk

)
α2

k

(
µ2 +α2

k +µ
) exp

(
−4α2

k t

π2τd

)
, (5.31)
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Figure 5.20: Single chain coherent dynamic structure factors of the simulated chains. The
q values shown are 0.55 nm−1 (circles), 1.0 nm−1 (crosses), 1.4 nm−1 (squares), 1.8 nm−1

(triangles), and 2.2 nm−1 (diamonds). Dashed lines are Rouse model predictions, Eq. (5.30),
solid lines are fits to the reptation model, Eq. (5.31).
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where αk are positive solutions of the transcedental equation

αk tanαk = µ =
q2Nb2

12
, (5.32)

and A is a normalization factor for the second term in Eq. (5.31). The first term describes the
decay of correlations due to the smearing out of the (initially localized) chain throughout its
tube. This is called local reptation. The associated q-dependent time scale τloc is given by

τloc =
36

Wb4q4 . (5.33)

To calculate τloc is not trivial, because both the Rouse rate W and the effective statistical
segment length b depend on the length scale. We can estimate these quantities by assuming
that the length scale probed by a wave vector corresponds to the end-to-end distance of a
subchain of some effective number (Neff) of blobs, i.e., Neff(q)b2

eff(q) ≈ (2π/q)2. Using Fig.
5.3 we find that the effective number of blobs for the smaller scales are: Neff(2.2) ≈ 3.6 for
q = 2.2 nm−1, Neff(1.8) ≈ 4.8, and Neff(1.4) ≈ 7.0, with effective statistical segment lengths
beff = 1.52, 1.60, and 1.69 nm, respectively. From Fig. 5.8(a) the effective Rouse rates at
these length scales are estimated as W = 0.43, 0.32, and 0.25 ns−1 respectively. This is very
fortunate, for the product Wb4 turns out to be almost constant: 2.27, 2.08, and 2.03 nm4/ns
respectively. In our subsequent calculations we have used the average value of 2.1 nm4/ns.

The second term in Eq. (5.31) describes the slow, global creep of the chain inside its tube,
known as reptational diffusion. This process depends on the disentanglement time τd , which
is known from the previous subsection. The summation is done over different reptational
modes, and should therefore stop at kmax ≈ int(N/Ne), while in the literature a value of either
N−1 or ∞ is used. The difference, however, is small. It is important that the disentanglement
times of long chains (say N ≥ 20) are much larger than the entanglement time τe ≈ 6 ns.
This causes a plateau to emerge at intermediate times τe < t < τd . It should be noted that
in the original theory by De Gennes [27] the height of this plateau was determined by a

prefactor
[
1− (qd/6)2

]
, in which it was assumed that qd � 1. To allow for larger q values

this prefactor is interpreted, in analogy with Schleger et al., [120] as the first two terms in the

Taylor series of exp
[
−(qd/6)2

]
.

The fits using Eq. (5.31) are shown as solid lines in Fig. 5.20. Since all other parameters
were known from previous measurements, the tube diameter d served as the only fit param-
eter. For each chain length a joint fit for all q and t > τe was done. The dynamic structure
factor results of the B6 and B10 chains could not be described by Eq. (5.31) in any way. The
results of the B20 system could be fitted reasonably well, except for the highest q value. The
fit quality for the longer chains (N > 20) is good, particularly if we take into account that the
chains are not extremely far in the entangled regime (only 5 to 8 times Ne). In a similar way,
Pütz et al. have measured the dynamic structure factor of their FENE model chains. [107,108]
They also found good agreement with reptation theory for chain lengths above 550, which
is about 8 times Ne, if the proper [108] entanglement length is used (see the discussion, Sec.
5.4).
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With this data, however, we are not able to distinguish between De Gennes’ reptation
model and other models which also predict a plateau, such as the rubberlike model of des
Cloizeaux [18] or the model of Ronca. [117] Schleger et al. were able to show that experiment
clearly favors the reptation model. [120] This was possible because they measured up to times
as large as 175 ns. The correlation times of our simulations did not reach so far, but we have
shown that the dynamic structure factor results are at least compatible with reptation. The
tube diameters which follow from the fits are given in Table 5.3. Notice that roughly the
same tube diameter d is found for chain lengths N = 30, 40 and 50. Some scatter in the data
of d occurs, but the average of d ≈ 5.4 nm for the three largest chain lengths is in very good
agreement with the results of Wischnewski et al. who found d = 5.3± 0.7 nm for a similar
molecular weight range, but at a slightly higher temperature. [140]

5.4 Discussion

In this work we have studied the time and length scales which determine the transition from
unentangled to entangled dynamical behavior by means of coarse-grained molecular dynam-
ics simulations. What have we learned from these simulations? First, we found clear evi-
dence for stretched exponential relaxation of the Rouse modes. Our simulations show that
the stretching parameter βk depends on the length scale under consideration, but a constant
value of 0.8 is observed for the first Rouse mode of each chain length between 6 and 50.
If this value would remain the same for much longer chains, this would open up a way to
roughly estimate the disentanglement times of long chains from relatively short simulations.
As τr starts to deviate from τd , this estimate becomes increasingly worse. Moreover, there
is, no guarantee that the value of 0.8 will persist indefinitely for longer chains. This must be
investigated in future work.

It must be remarked that the non-exponential relaxation of the Rouse modes comes as
no surprise. Stretching was already observed in Chapter 4, but we did not pay attention to
the fact that relaxation after τr is exponential, obtaining averaged estimates of the stretch-
ing parameters, which were somewhat closer to unity. Also, Richter et al. [114] suggested
some years ago that the assumption of exponential decay for the Rouse modes may be
too rough for higher molecular weight chains, which was confirmed by computer simula-
tions. [100–102, 126, 129] However, the physical origin of the stretching is not entirely clear.
Because stretching is observed at length scales below the entanglement length, a successful
theory of polymer dynamics must not only include entanglement effects but possibly also
other intermolecular correlations and chain stiffness effects. In this respect it is important to
mention polymer mode-coupling theory [122] which predicts an intermediate time regime of
non-exponential relaxation of the normal mode time correlation functions.

For the range of chain lengths studied here, we have made a rather detailed analysis of
the scaling of the effective relaxation times with chain length N and mode number k. When
plotted against N/k we find three universal regimes. In the first regime the effective relax-
ation times scale as predicted by the Rouse model, Eq. (5.8). The second regime is relatively
small, but a distinct (N/k)4 scaling can be observed around Ns. This k-dependence (k−4) was
predicted by Kavassalis and Noolandi in their Generalized Rouse Model (GRM), if we inter-
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pret their Ne as our Ns, but they find a different N-dependence (N3). [60] Alternatively, the
bending force model of Harnau et al. [54] could be used in an effort to explain the observed
scaling as a stiffness effect. In Chapter 4 we found that a stiffening of the chain caused both
faster relaxation of the small scale modes and slower relaxation of the large scale modes.
However, as was already pointed out by Richter et al., [112] a stiffness correction alone is
not enough. Using realistic values of the stiffness, the relaxation times decrease too slowly
with increasing mode number. In Chapter 4 we showed that the uncrossability of chains is
an important factor in the internal relaxation of a polymer chain. It has a large influence on
the relaxation times of all scales but the very smallest. From the deviation of the stretching
parameters from unity, Fig. 5.7, we deduce that the kinetic constraints, caused by the uncross-
ability constraints, are most severe at length scales of the order of Ns. Although at this length
scale we can not yet speak of global entanglement effects (in the sense of confined dynamics
inside a tube), there are strong local effects leading to a rapid increase of effective friction.
The universality of the curves show that the magnitude of this effective friction depends on
the absolute length scale and not on the chain length itself. This is also the case for the third
regime, where the effective relaxation times scale like (N/k)3. The third regime starts at about
1.5Ns, i.e., C60. While we can not rule out the possibility that the scaling of the second regime
only shows up in this particular coarse-grained model, the physical reality of the third scaling
regime is supported by similar observations in other simulation models. [65,100–102,126] In
all these simulations the density was kept constant. If the density is allowed to decrease with
decreasing chain length, e.g., by simulating under normal pressure, the scaling of the relax-
ation times in each of these regimes is expected to be different. However, the characteristic
length scales at which the transitions occur may still be observed. Indeed, Harmandaris et
al. [51, 52] performed atomistically detailed NVT simulations of polyethylene at P = 1 atm,
and found a clear increase of the friction coefficient between C40 and C60. After the three
universal regimes a final regime sets in where the effective relaxation times scale with N3.5

and k−2, in agreement with reptation theory if contour length fluctuations are included. Note
that the smallest length scale where this final regime applies closes in on the largest available
length scale (= N) with increasing chain length. They will merge at some very large chain
length unless the observed scaling laws change beyond the range of chain lengths studied
here.

If focus is laid on the terminal relaxation times, instead of effective relaxation times, the
observed scaling is compatible with the reptation model for all length scales beyond Ne.

The effect of the increased friction around the length scale Ns shows up in the mean square
displacement of blobs g(t) as a transition from initial Rouse-like t1/2 behavior to a smaller
power law exponent. In our case the exponent is about 0.4 for the B50 system, but lower
values may be reached if longer chains are used and the average is taken over inner blobs to
exclude the influence of the more mobile chain ends. [66,107] It is important to note that this
transition occurs at an earlier time than the entanglement time. Likewise, the scaling of the
diffusion coefficient with chain length (at constant density) displays a transition at Ns, not at
Ne. If we study the mean square center of mass displacement gcm(t), it becomes clear that the
center of mass motion of a chain is strongly influenced by the uncrossability constraints. A
subdiffusive regime is observed up to the time τr, which, because of the relatively short chain
lengths studied here, almost coincides with the disentanglement time τd . To illustrate the
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Figure 5.21: Blob and center of mass mean
square displacement data of the B40 system
(plus). Extrapolation (solid lines) to t = τd
yields a center of mass mean square dis-
placement equal to

〈
R2

g

〉
. Different time

scales are indicated by dashed lines.
10

1
10

2
10

3
10

4
10

5
10

6
10

7

t [ps]

10
−2

10
−1

10
0

10
1

10
2

g(
t)

 [n
m

2 ]

τd

〈Rg

2〉

B40

0.7

1

τs

0.4

chains

blobs

τ0

CG

1

0.5

τe

consistency of putting τr equal to τd for the longer, but still not very long chain lengths, we
have plotted in Fig. 5.21 the mean square displacement of the center of mass of a B40 chain
and its extrapolation with slope 0.7. The extrapolation at t = τd exactly equals the mean
square radius of gyration R2

g, in agreement with the fact that the chain must have escaped
its original tube at t = τd . We note that in order for gcm(τd) = R2

g to hold, the diffusion
coefficient D must be proportional to R2

g/τd , in which case a stronger than N−2 dependence
is predicted. Indeed, a least squares fit to a power law of the data of 20 ≤ N ≤ 50 gives
D ∼ N−2.2, which is in agreement with recent results giving D ∼ N−2.28±0.05 for different
polymer species. [72, 134]

The advantage of coarse-graining bottom-up is that it allows for a direct comparison with
atomistic simulations and experimental values, without any need of mapping to theoretical or
phenomenological models. In Chapter 4 we showed the good agreement between the coarse-
grained and atomistic simulations and in this chapter we showed the good agreement with
experimental values. In Table 5.4 the entanglement parameters found in our work are sum-
marized and compared with rheological and NSE data. The tube diameter for polyethylene as
estimated from S(q, t) (d ≈ 5.4 nm) agrees well with experimental values for a similar molec-
ular weight range. For very long chains, assuming that d2 ≈ Neb2, we expect a tube diameter
of dNSE ≈ √

6 ·3.3 = 4.4 nm, in agreement with (but slightly underestimating) the experi-
mental value. [140] The plateau modulus yields an entanglement molecular weight which is
about half of the estimate from S(q, t), also in agreement with experimental observations.
The reason why Me,p may differ from Me was discussed by Tanaka et al. [133] They argued
that Me,p, defined by Eq. (5.25) is not a pure entanglement parameter, and may therefore not
be the same as Me, which is a parameter specifying the reptation/tube model.

Besides comparing with experimental work, we can also compare with other simulation
work. The best studied simulation model of the last decade has been the FENE model of Kre-
mer, Grest, and co-workers. [66, 68, 107] One of the remaining puzzles of this model is the
discrepancy between the entanglement length Ne calculated from the mean square displace-
ment and from the single chain coherent dynamic structure factor. Pütz et al. wonder why
S(q, t) should give different results from g(t) since “they both are single chain quantities and
measure the same motion.” [107] However, the coherent dynamic structure factor measures
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Simulation Experiment

τe (ns) 6 5
Me (g/mol) 1700 2000
Me,p (g/mol) 960 920
dNSE (nm) 5.4 5.3

Table 5.4: Entanglement parameters for PE from this simulation study (T = 450 K) and
experiment. Experimental τe and Me are estimates from NSE experiments at T = 509 K
(Ref. [120]). Experimental Me,p is estimated from G0

N , Eq. (5.25), including factor 4/5 at
T = 443 K (Ref. [41]). Experimental dNSE is for a Mw range 12000 to 25000; d ≈ 4.6 nm for
Mw = 36000 (Ref. [140]).

the motion of a q-dependent number of chain segments surrounding the original position of
a given segment. It is therefore sensitive to relative motions on a q dependent scale. On the
other hand, the mean square displacement g(t) measures the absolute motion of a single seg-
ment in space, and is therefore much more sensitive to local changes of the effective friction,
resulting in a somewhat earlier slowing down. Thus, we suggest that the claimed entangle-
ment length from g(t) is actually the slowing down length Ns. (In this respect it is important
to note that their simulations were also performed at constant density.) Pütz et al. deduced
from the mean square displacement of (inner) segments an entanglement length (now slowing
down length) of 35 segments for N = 700 and 28 segments for N = 10000. [107] The tran-
sition in the scaling of the diffusion coefficient with chain length also occurs around N = 35
(see their Fig. 8 in Ref. [66]). Fitting the single chain coherent dynamic structure factor
S(q, t) of the reptation model to their simulation data they find dNSE = 12.9σ for N = 700
and dNSE = 9.6σ for both N = 2000 and N = 10000. The S(q, t) data of N = 10000 was
found indistinguishable from that of N = 2000, [108] from which may be concluded that fi-
nite chain length effects have no discernable effects beyond N = 2000. [139] Again assuming
that d2 ≈ Neb2, this yields an entanglement length of NNSE

e ≈ (9.6/1.28)2 = 56 for very long
chains. These estimates yield a ratio Ns/NNSE

e of about 0.5 to 0.6, in rough agreement with
the value of 0.33 expected for our simulation model in the case of very long chains. A second
characteristic ratio to compare both models is Ne,p/NNSE

e . Pütz et al. estimated G0
N from the

normal stress decay in a step strain elongation. [107] The outcome depended somewhat on
the applied stress-strain formula, but an average yielded Ne,p = 72 (65 - 83). Thus the ratio
Ne,p/NNSE

e was found to be approximately 1.3, while our result is about 0.6. This should be
compared to the experimental result of about 0.5 which can be calculated from the values in
Table 5.4. It is encouraging to find that our model predicts a proportionality between these
length scales which agrees with experiment.

We end this section with a remark concerning computation times. Large computational
overhead is introduced by the rather complicated uncrossability constraint. Still, there is a
clear speed-up compared with atomistally detailed simulations as is exemplified by the fact
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that we are able to reach larger correlation times with equal computational effort. The FENE

model mentioned above, using conventional schemes, also reaches such large speed-ups, or
even larger ones. [66,107] We think, however, that our model, since it is built on an undulging
atomistic model, encompasses time and length scales in a much more realistic way than the
FENE model in which several monomers are mapped into an unrealistically hard bead. In
the limit of very long chains this objection will become less important, while at the same
time the FENE calculations will most probably be much faster than the TWENTANGLEMENT

calculations.

5.5 Summary

The general picture that emerges from this work is that the dynamics of medium long chain
lengths (C400 - C1000) is in approximate agreement with reptation theory, with fluctuating
contour length corrections when necessary, but that the approximation of a primitive path
moving with great freedom in a tube is too strict. The chains are interacting with their neigh-
bours on every length scale, down to the slowing down length Ns, leading to non-exponential
relaxation for as long as it takes a chain to escape its original environment. Only after time
τr, equal to τd in the case of our moderately long chains, and for mode numbers smaller than
kmax = int(N/Ne), exponential relaxation occurs. This can effectively be accounted for by
explicitly introducing into the reptation model results the measured relaxation behavior of the
reptating modes. The same must be done with those modes whose length scales are smaller
than the entanglement length, and which must be treated like Rouse modes. Proper care also
has to be taken of the fact that the chains are not Gaussian, caused by stiffness and other
sources of non-harmonicity. These effects can in some cases be handled by using measured
mode amplitudes instead of pure Rouse amplitudes.

We want to stress that in our approach we started from the bottom, i.e., all coarse-grained
parameters were determined “ab initio” from short atomistic molecular dynamics runs of
polyethylene. The choice of the number of monomers in one blob, λ = 20, was arbitrary
within certain bounds, as explained in Sec. 5.2. Other values, such as λ = 10 or λ = 30
could have been used, leading to different blob interactions, but they should lead to the same
dynamic behavior. We find very good agreement with experimental data on polyethylene,
which we think is to a large extent due to the way we have introduced the entanglements
in our model. In contrast, if the uncrossability of chains is realized by combining relatively
hard spheres into flexible chains, the proportionalities between different length scales may
not be the same as those that occur in real polymer systems. Chemically realistic polymers
are flexible only at large length scales when the beads will be almost empty and consequently
very soft. These objections will become less important if one is interested only in very long
time scales in very long polymer chains, in which case other, more conventional, coarse-
grained simulations may become preferable.

We hope that the present work will aid in the understanding of the dynamics and rhe-
ology of polymer melts. It will certainly be interesting to extend this simulation model to
even longer chains, possibly of different polymer species, and to investigate the non-linear
properties under shear.
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Figure 5.22: Scalar friction from integration
of the autocorrelation of the constraint force
(dashed line) and autocorrelation of the ran-
dom force (solid line), Eq. (5.A.1). A value
of 8 ps−1 was used in the coarse-grained
simulations.

5.A Appendix. Determination of the friction factor

In the coarse-grained approach the fast fluctuating interactions between the microscopic con-
stituents are represented by a random forces and frictions. Assuming that the friction on each
blob is isotropic and independent of the positions of the other blobs, it can be calculated from:

ξ (t) =
β
M

∫ t

0
dτ
〈
FR

α (τ)FR
α (0)

〉
, (5.A.1)

where β = 1/kT and FR
α is the x, y, or z-component of the random force on a blob. The friction

can be calculated from a microscopic molecular dynamics run. [1] To this end, a constraint
force is added to fix the position of one blob relative to the center of mass of the box. Part of
this force at each instant balances the mean force due to interactions with other blobs, while
the remaining part balances the fluctuating random force due to the bath variables. The issue
now is to isolate the latter part. Simply subtracting the long time average from the constraint
force will not give the correct random force, because on the longer time scales the mean force
also fluctuates, albeit at a much lower frequency. A way to estimate the maximum frequency
with which the mean force oscillates is to search for the maximum curvature within one kT
from the free energy minimum:

Mω2
max �

(
∇2χ

)
max . (5.A.2)

Applying this to the interaction model for our coarse-grained polyethylene blobs, we found
ωmax � 0.06 rad/ps. The constraint force was measured for five nanoseconds in a simulation
of C120H242. The constraint force data was Fourier transformed and frequencies ω < ωmax

were removed. The autocorrelation, Eq. (5.A.1), was determined by squaring and Fourier
transforming back to the time domain. Different blobs were fixed in different runs, to ac-
count for varying friction factors at different positions along the chain. However, it was
found that these friction factors do not differ much for C120. The averaged result is given
in Fig. 5.22 (solid line). Notice that the friction levels off to a value of about 8 ps−1 after
about 5 ps of correlation time, which was the value used in all our coarse-grained simulations.
The 5 ps correlation time is sufficiently small compared to the smallest mean force oscilla-
tion period (about 100 ps), so the assumption that the blobs are slow compared to the bath
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variables (Markov approximation) seems to be justified. Fig. 5.22 also shows the integrated
autocorrelation of the constraint force itself (dashed line). In this case the friction factor be-
comes much larger, consistent with the fact that now also the interactions between the blobs,
especially between blobs on different chains, are included in the friction. This leads to the
well-known Einstein result for the diffusion coefficient,

D =
kT

NMξ
, (5.A.3)

where N is the number of blobs in a chain. In Chapter 3 it was found that the friction
frequency corresponding to the measured diffusion coefficient of a C120 chain must be 19.0
ps−1, which is consistent with our present results.
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6
A time-integrated estimate of
the entanglement molecular
weight in polymer melts in
agreement with the one
determined by time-resolved
measurements

We propose definitions for the entanglement molecular weight Me which can
be derived from different independent time-resolved measurements, such as the
single-chain dynamic structure factor and the zero-shear relaxation modulus. Us-
ing these definitions, measurements in simulations of polyethylene consistently
yield the same estimate of the entanglement molecular weight. This value of Me

can not be derived directly from time-integrated properties, such as the diffusion
coefficient, viscosity, or the shear plateau modulus. However, using a dynamic
scaling hypothesis, the density of dynamic units making up the temporary net-
work can be derived from a combination of diffusion coefficient and viscosity,
without specifying a precise mechanism for entanglement polymer motion. We
show that the molecular weight corresponding to one of these dynamic units is
consistent with values of Me derived from the time-resolved measurements, but
not consistent with the empirical estimate from the value of the shear plateau
modulus.∗

6.1 Introduction

The peculiar dynamics and viscoelastic behavior of polymer melts is often rationalized by
viewing the melt as a temporary network. This network arises as a result of mutual un-
crossability of the constituent chains, which effectively confines the chains in “tubes” from
which they can only escape through the process of reptation. Since the longest character-
istic times increase extremely fast with molecular weight, relaxation processes occur on an
enormous range of time and length scales. It is therefore not surprising that a host of exper-
imental techniques is used to study the dynamic properties of polymer melts on all relevant
time and length scales. Sufficiently generic system properties can routinely be measured by
more than just one experiment. In these cases, experiments of different nature often lead to
mutually inconsistent conclusions. This is particularly true for the determination of the en-
tanglement molecular weight Me. In this chapter, we will show that such inconsistencies need

∗ The work described in this chapter has been submitted to Macromolecules
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not arise. When focus is laid on various time-resolved experiments, a consistent value for Me

emerges. Moreover, we will present a particular combination of time-integrated quantities,
which yields exactly the same value for Me.

Before going into details, we will explain the distinction between the two abovementioned
types of experiments. Time-resolved experiments measure the dynamics of the system with
sufficiently small time resolution to be able to probe a relevant time dependent correlation
function before it reaches its long time limit. Examples are neutron spin echo (NSE) spec-
troscopy, [120] measuring the coherent dynamic structure factor, proton and deuteron field-
cycling NMR relaxometry, [61] probing the segment tangent vector correlation function, and
NMR field-gradient diffusometry (when applied to relatively short time scales), [42] probing
the mean-squared displacement of segments. On the other hand, time-integrated experiments
either integrate over a long time or measure the long time limit of some correlation function,
which amounts to integrating its time derivative. Examples are measurements of the shear
viscosity [103,106] or plateau modulus, [40] both by means of rheometry, and measurements
of self-diffusion coefficients, e.g., by means of NMR field-gradient diffusometry, [103, 106]
forward recoil spectroscopy, [21] or scanning infrared microscopy. [124]

Now, starting with a polymer model, it is usually possible to express experimentally ac-
cessible quantities in terms of a limited set of microscopic parameters (like Kuhn step length,
friction coefficient, and entanglement length). Reversal of the procedure, i.e., deriving the
limited set of parameters from experimental data, must be done with caution because the
model will possibly not be perfect. Particularly when time-integrated measurements are in-
terpreted, there is the danger of getting incorrect microscopic parameters, because the data
do not contain enough detailed information. Still, it is highly desirable to be able to esti-
mate the microscopic parameters from time-integrated measurements because of the relative
simplicity of such experiments.

6.2 Time-resolved results

In this section we will show that from the analysis of different time-resolved results a con-
sistent value for the entanglement molecular weight emerges, which is why we perceive this
value as the “true” entanglement molecular weight. We will clarify our point by the example
of polyethylene (PE) melts at 450 K. We will refer to experimental work and to the results of
molecular dynamics simulations of PE melts at a temperature of 450 K and density ρ = 0.761
g/cm3, reported in Chapter 5.

The entanglement molecular weight has been derived in the following ways:

1. Richter et al. [110, 120, 141] have performed NSE experiments on high molecular
weight PE melts. For the single-chain coherent dynamic structure factor, they found
very good agreement with the predictions of the reptation model. A simultaneous fit
could be made for several values of the wave vector q using a slightly adapted ver-
sion [98, 120, 141] of an expression formulated by de Gennes, [27] with the tube di-
ameter d as the only fit parameter. This allowed them to extract the tube diameter d
very accurately: at a temperature of 509 K, a tube diameter of about 4.6 nm was found.
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Although in the original tube model it was assumed that the tube diameter is more or
less independent of temperature, in reality this is only approximately true. The con-
formations are different between 509 K and 450 K, leading to different local structures
and different tube diameters. In their 1993 paper, [110] Richter et al. investigated
the temperature dependence of the tube diameter and found that it increases slowly
with temperature. In a range of temperatures, including the two above, d was found
to be proportional to exp

[
(1.2±0.2) ·10−3T

]
. Using this formula, one finds a slightly

smaller tube diameter, d = 4.3 nm, at the lower temperature of 450 K at which we
have performed our molecular dynamics simulations. In these simulations, like in the
experiments of Richter, the single-chain coherent dynamic structure factor was found
to be in good agreement with the tube model for times larger than the entanglement
time (vide infra). A simultaneous fit for several values of q yielded d = 5.4 nm in
the molecular weight range Mw = 8−14 kg/mol. These results are in good agreement
with results of Richter et al. in the same range om molecular masses. [141] The reason
for the apparent increase of d is the fact that, in the quoted molecular weight range,
the chains are still very much influenced by contour length fluctuations. Richter et al.
have successfully shown that, on correcting for these contour length fluctuations, the
resulting tube diameter does not significantly depend on the chain length. [141] In other
words, the corrected tube diameter is found to be in agreement with the tube diameter
of asymptotically long chains (d = 4.3 nm at 450 K).

Now, assuming that d2 equals the average squared end-to-end distance of a chain with
molecular weight Mw = Me, i.e.,

d2 =
〈
R2

e (Me)
〉

, (6.1)

one finds Me = 1.7 kg/mol for polyethylene at a temperature T = 450 K. This is our
first estimate of the entanglement molecular weight. Some criticism may be cast
on the usage of the average end-to-end distance in Eq. (6.1). Some authors claim
that d must equal two times the radius of gyration of a chain with molecular weight
Mw = Me. Assuming a Gaussian distribution of the particles, this would amount to
d2 = 2/3

〈
R2

e (Me)
〉
. Notice that this prefactor of 2/3 would actually lead to a larger

estimate for the entanglement molecular weight because the tube diameter is already
fixed by the experimental results. As we will see in the next section, this would there-
fore worsen the agreement with the estimate from the value of the plateau modulus. We
will substantiate this prefactor of 1 by comparing with the other time-resolved quanti-
ties.

2. In the simulations we found that the shear relaxation modulus G(t), which describes
the relaxation of stress after a small shear step, can be described well by the Rouse
model [30] for melts of relatively low molecular weight polyethylene. For molecular
weights larger than 1.7 kg/mol an initially Rouse-like stress relaxation substantially
slows down at larger time scales. Therefore, if we define the entanglement molecular
weight as the lowest molecular weight where deviations from Rouse-like stress relax-
ation occur, we find 1.7 kg/mol as the entanglement molecular weight.
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3. For all chain lengths, the slowing down of G(t) sets in at 6 ns, which time in the
usual tube/reptation model [30] is identified as the entanglement time τe. We define
the entanglement molecular weight as the molecular weight of a chain whose longest
relaxation time is equal to τe,

τe = τ1 (Me) . (6.2)

In the previous chapter, the relaxation times of various chain lengths have been inves-
tigated. Using Eq. (6.2), we again find an entanglement molecular weight of Me = 1.7
kg/mol.

4. Finally, the characteristics of both the short-time and the long-time Rouse-mode corre-
lation functions change drastically when Mw/k = Me, with k the Rouse-mode number
and Me = 1.7 kg/mol again [see Figs. 5.7 and 5.8(b)].

Thus, we find that time-resolved measurements consistently give the same value for Me,
independent of the type of experiment. The entanglement molecular weight can be estimated
from the tube diameter [via Eq. (6.1)], from the entanglement time [via Eq. (6.2)], by careful
investigation of the onset of deviations from Rouse-behavior in the shear relaxation modulus,
or by careful investigation of the relaxation behavior of the Rouse-modes.

6.3 Time-integrated results

In practice, the entanglement molecular weight is often determined [30] from the experimen-
tal value of the plateau modulus G0

N :

Me,p =
4
5

ρNAkBT

G0
N

, (6.3)

where NA is Avogadro’s number, kB is Boltzmann’s constant, T is the temperature, and ρ is
the polymer melt density (we have added a subscript p to indicate that Me is estimated from
the plateau modulus). Fetters et al. [40] measured the value of the plateau modulus in PE
melts at a density of ρ = 0.768 g/cm3 and temperature T = 443 K, close to the conditions
of the molecular dynamics simulations. Using Eq. (6.3) (including the prefactor 4/5) they
found Me,p = 0.92 kg/mol. This is much lower than the previously found 1.7 kg/mol from
the time-resolved measurements.

Notice that Eq. (6.3) uses a rather arbitrary prefactor of 4/5 from the Doi-Edwards model.
[30] Using different models, different prefactors may be found. However, the prefactor never
exceeds unity. Even when this largest prefactor of 1 is used, the entanglement molecular
weight from the plateau modulus (Me,p = 1.15 kg/mol in that case) can not be brought into
agreement with the estimate from the time-resolved measurements. It may even be that there
is no unique relation between Me and G0

N . Indeed, as was already noticed by Tanaka et
al., [133] Me,p defined by Eq. (6.3) is not a pure entanglement parameter, and may therefore
not be the same as the “true” entanglement molecular weight as it occurs in the tube/reptation
model. To estimate the latter, one needs to measure a physical quantity that is sensitive to
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density fluctuations occurring in a tube, such as the single-chain coherent dynamic structure
factor. [120]

Also, there is no straightforward way to extract the entanglement molecular weight from
the molecular weight dependence of time-integrated quantities such as the viscosity η or the
self-diffusion coefficient D. The reptation model predicts a transition in the scaling of D from
M−1

w to M−2
w at the entanglement molecular weight. However, both experiment [103, 106]

and simulation (see Chapter 5) have revealed that the molecular weight region in which D
scales like M−2

w (and even faster [72]) clearly starts before Me. No transition is observed
at the molecular weight Me itself, not under constant pressure nor under constant density
conditions. This fact has not always been recognized in other polymer simulation work,
yielding underestimated values of Me, as shown in Chapter 5. The reason why the transition
does not occur at Me is that there are additional molecular relaxation processes besides those
in the original reptation model, as was already noticed by Pearson et al. [103] Similarly, the
exponent in the scaling of the viscosity η has a transition at a molecular weight, which is
much larger than Me. This molecular weight is usually referred to as the critical molecular
weight Mc (4 - 5 kg/mol for PE [106]). It is evident that, if one insists on estimating Me from
time-integrated data, one should aim for combinations of observables which do not rely on
the precise mechanism for the polymer motion.

Oostwal and Odijk introduced a dynamic scaling hypothesis, which applies to both semidi-
lute and concentrated solutions and to polymer melts. [94] We have repeated their arguments
in Appendix 6.A. The main result is that ν , the effective number of dynamic units per unit
volume making up the temporary network, can be related to a combination of the viscosity,
self-diffusion coefficient, and a characteristic scale of the polymer [see Eq. (6.A.4)]. The
dynamic scaling hypothesis does not supply exact prefactors. However, taking into consider-
ation a limiting case the prefactor can be fixed, leading to the following result:

ν =
36ηD

kBT 〈R2
e〉

. (6.4)

The limiting case, motivating the prefactor of 36 is the following. Melts of unentangled, short
polymers are known to behave like Rouse chains. The viscosity of a Rouse chain is given
by [30]

η =
π2

12
ckBT

N
τR, (6.5)

where N is the number of segments per chain, c is the number of segments per unit volume,
and τR is the Rouse time, which is given by

τR =
ζN2b2

3π2kBT
, (6.6)

where ζ is the segmental friction coefficient and b is the segment size. The latter two quanti-
ties can be eliminated in favor of the diffusion coefficient D = kBT/Nζ and the mean square
end-to-end distance

〈
R2

e

〉
= Nb2:

τR =

〈
R2

e

〉
3π2D

. (6.7)

115



6. ENTANGLEMENT MOLECULAR WEIGHT IN POLYMER MELTS

polymer Mw (kg mol−1)
〈
R2

e

〉
(nm2) η (Pa s) D (10−10 m2 s−1) ν (nm−3)

C80H162 1.12 10.2 0.005 1.8 0.51
C120H242 1.69 16.3 0.011 0.90 0.35
C200H402 2.81 25.3 0.033 0.30 0.23
C400H802 5.61 54.9 0.20 0.084 0.18
C600H1202 8.42 91.8 0.88 0.036 0.20
C800H1602 11.23 132 2.95 0.018 0.23
C1000H2002 14.03 167 5.98 0.011 0.23

Table 6.1: Molecular characteristics and density of effective dynamic units for polyethylene
at 450 K. Mean square end-to-end distance, zero shear viscosity, and self-diffusion coefficient
are taken from molecular dynamics simulations, see Chapter 5. All these simulations were
performed at constant density, ρ = 0.761 g cm−3. ν is the density of effective dynamic units
making up the temporary network, calculated according to Eq. (6.4) in the main text.

Now, in a melt of short polymers, each individual chain acts as an independent spring. This
is true because short chains are unentangled. Therefore, in the limit of short chain lengths,
the effective number of dynamic units per unit volume is equal to the number of chains per
unit volume, i.e., ν = c/N. Combination of Eqs. (6.5) and (6.7) leads to Eq. (6.4).

We now generalize Eq. (6.4) by stating that it is valid for melts of polymers of any length.
After all, the dynamic scaling hypothesis is valid for polymers of any length. For polymer
melts of increasingly large molecular weight, we expect that ν becomes constant. In Table
6.1, the results of constant density (ρ = 0.761 g/cm3) simulations of PE melts at 450 K are
reported (see Chapter 5). The fact that ν indeed becomes more or less constant for large
enough molecular weights, indicates the presence of a characteristic length for the effective
dynamic units. The corresponding characteristic mass ρNA/ν is conceptually very similar
to the entanglement molecular weight, and for a melt obeying reptation actually equals Me.
[94] In Fig. 6.1, ν/ρNA is plotted against molecular weight. In this scaling, the vertical
axis represents the inverse of the molecular weight corresponding to one effective dynamic
unit. The low molecular weight data is observed to be close to 1/Mw (solid line), signifying
the fact that in this regime indeed the individual chains are the dynamic units. This is a
justification of the quantitative validity of Eq. (6.4). At higher molecular weight, the data
clearly deviate from the 1/Mw line. After a dip, they approach a value which is consistent
with the entanglement molecular weight found from time-resolved measurements, i.e., 1.7
kg/mol, see the long-dashed line in Fig. 6.1. On the other hand, if the empirical estimate
based on the plateau modulus would have been the actual weight of an effective dynamic
unit, the data in Fig. 6.1 would have to stabilize to the value indicated by the dotted line,
calculated according to Eq. (6.3) (Me,p = 0.92 kg/mol. Even when the maximum prefactor
of one is used in Eq. (6.3) instead of the Doi-Edwards prefactor of 4/5, the estimate from the
plateau modulus remains at variance with estimates from time-resolved measurements and ν
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Figure 6.1: Inverse molecular weight of an
effective dynamic unit in a polyethylene
melt at 450 K as a function of polymer
molecular weight: circles are results from
molecular dynamics simulations, see Chap-
ter 5. The solid line represents the inverse
polymer weight, in which case the individ-
ual chains are the dynamic units. The long-
dashed line represents the inverse entangle-
ment molecular weight, obtained from time-
resolved measurements (Me = 1.7 kg/mol).
The dotted line represents the inverse of the
empirical estimate based on the value of the
plateau modulus [Eq. (6.3)]; the lower part
of the error bar indicates the value from Eq.
(6.3) when a prefactor of one is used instead
of the Doi-Edwards prefactor of 4/5.

(see the error bar). (It is important to be able to recognize when the value of ν has stabilized.
This will depend on many factors, of which the polydispersity of the sample is an important
one. [103])

6.4 Discussion and conclusion

Let us note that the combination of viscosity and self-diffusion coefficient was already inves-
tigated by Pearson et al. [103,106] No attempt was made, however, to derive the entanglement
molecular weight from the high molecular weight data. Rather, they used the empirical value
based on the plateau modulus to test the reptation theory prediction

(ηD)l = (ηD)s (Mw/Me) , (6.8)

with the subscript l referring to long chains and s to short chains. As we have reviewed, it
was shown by Oostwal and Odijk that such a relation is to be expected to hold true on much
more general grounds. The fact that a scaling like Eq. (6.8) holds is, in itself, not a validation
of reptation theory.

However, we have shown that the density of effective dynamic units ν obtained by the
combination of viscosity and self-diffusion coefficient becomes a constant for large val-
ues of Mw, and that this constant corresponds to a value of Me in agreement with time-
resolved experiments, when the outcome of these experiments are interpreted in terms of
the tube/reptation model. This is indeed extra motivation for the validity of the reptation
model. The strict relationship between the entanglement molecular weight and the plateau
modulus, as it occurs in reptation theory, has to be released.

Such a subtlety was not known to Pearson. In retrospect, deriving Me from Pearson’s data,
we find an Me close to 1.7 kg/mol, in agreement with our simulation results and the neutron
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spin echo experiments of Richter et al. [120, 141] and not with Me,p obtained from the value
of the plateau modulus. More theoretical work will be needed to fully understand the exact
relationship between the value of the plateau modulus and the value of the entanglement
molecular weight as it occurs in the tube/reptation model.
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6.A Appendix. Dynamic scaling hypothesis

Suppose we know both the mean square extension R2 and the self-diffusion coefficient of a
polymer chain. The relation

D ≡ R2

τ
(6.A.1)

defines a time scale τ during which a test chain diffuses over a distance R. The probability of
two test chains initially occupying essentially the same domain of size R3 to still overlap at a
later time t, decays rapidly to zero after a time of order τ . Stated differently, the correlation
of the network at time t with the original network at time t = 0, decays rapidly for t > τ . As a
consequence, stresses induced by a small shear strain applied at t = 0 will quickly disappear
at times t > τ . Oostwal and Odijk make this statement operational by assuming that there
is really only one time scale involved in both processes, i.e. diffusion and stress relaxation,
which leads to the scaling relation introduced previously by de Gennes: [26]

η ≈ Eτ . (6.A.2)

We will consider this equation as the definition of E, which has the dimension of a modulus,
but does not necessarily equal the plateau modulus G0

N . Still, it has to be interpreted in terms
of a temporary elastic network presumed to exist for times shorter than O(τ). Therefore, it
can be used to define ν , the effective number of dynamic units per unit volume making up
the temporary network:

E ≡ kBTν . (6.A.3)

Combining Eqs. (6.A.1) - (6.A.3), we eliminate the unknown time scale τ:

ν ≈ ηD
kBT R2 . (6.A.4)

Notice that, as also stressed by Oostwal and Odijk, Eq (6.A.4) is obtained without specifying
the detailed dynamics of the surrounding fluctuating network of other chains, nor specifying
whether the test chain diffuses in or out of an effective tube, or any other mechanism.
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7
Coarse-grained molecular
dynamics simulations of
polymer melts in transient and
steady shear flow

By use of nonequilibrium simulations the coarse-grained model of polyethylene,
developed in the previous chapters, is subjected to a planar Couette flow. Both
transient and steady state nonlinear flow properties are investigated for shear
rates varying from 30 to 3000 µs−1 and chain lengths varying from C80H162
to C800H1602. We report rheological data (shear viscosity, normal stress differ-
ences) and structural data (chain dimensions and the order tensor), and compare
them with experimental results, where available. The locations of maxima and
magnitudes of overshoots in the shear stress and normal stress difference are in
agreement with experimental results. We also observe an undershoot in the tran-
sient extinction angle, and a decrease of the steady state extinction angle with
shear rate, both of which are in very good agreement with recent experiments.
Two rheological “rules”, the stress-optical rule and the Cox-Merz rule, are tested.
It is shown that the extinction angle, as calculated from stress components, re-
mains equal to the optical extinction angle even for high shear rates, where the
stress-optical rule is no longer strictly valid.

7.1 Introduction

Coarse-grained molecular dynamics simulations provide a powerful tool to investigate the
microscopic origins of the rheological behavior of complex fluids. In Chapter 5 we have
investigated coarse-grained polymer melts by use of equilibrium simulation techniques, and
found good agreement with experimental results in the limit of zero shear rates. The good
agreement was not accidental, but due to the way the coarse-grained friction and interaction
model were derived from an underlying microscopic (atomistic) model. It was found that the
interactions between coarse-grained sites are rather soft, which without additional measures
would lead to unrealistic bond crossings and too fast dynamics. This accellerated dynamics
might have been slowed down by artificially changing the friction, but this would probably
have improved just one quantity, while aggravating the other. For example, it is known that
for high molecular weight polymer melts the combination ηD/

〈
R2

e

〉
is a constant (see Chap-

ter 6). In a system of crossable chains the product ηD is invariant under changes of the
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friction ξ . Since obviously
〈
R2

e

〉
is also independent of ξ , the product ηD/

〈
R2

e

〉
can not be

changed by just changing the friction. To preserve the physical reality of the coarse-grained
model, a constraint was introduced to prevent bond crossings. Because of this combination of
‘bottom-up’ coarse-graining and the guaranteed uncrossability of chains, the time and length
scales which occurred in the coarse-grained simulations were all in the right proportions. We
found good agreement with experimental diffusion and viscosity results, as well as neutron
scattering spectroscopy.

Encouraged by the success of this method, we now address the nonlinear properties of
our polymer simulation model. We will investigate nonlinear rheological properties of both
unentangled and entangled polymer melts. The longest chain lengths that we will study
have molecular weight Mw > Mc, i.e., well into the entangled regime where the zero-shear
viscosity scales approximately as η0 ∝ M3.4

w . Note that the pure reptation prediction, η0 ∝ M3
w,

only occurs in even longer chains (Mw > 100Me), in which case “ab initio” coarse-grained
simulations of the rheological properties are practically impossible.

Experimental data for the nonlinear viscoelasticity of unentangled and moderately en-
tangled polymer melts are hardly available because of the difficulty to reach the associated
high shear rates (at least under controlled circumstances). This is one motivation to perform
computer simulations. Another motivation is the fact that computer simulations can provide
valuable information about the relation between the rheology at the macrosopic level and the
molecular processes at the microscopic level. For example, the often used stress-optical rule,
which states a proportionality between the stress tensor and the refractive index tensor of a
polymer melt, can be tested because both properties can be measured independently in the
simulation.

Several theoretical models have been proposed, [30,33,58,71,81] all with their successes
and shortcommings. The Doi-Edwards tube model, for example, greatly overpredicts the
phenomenon of shear thinning, even to the degree of predicting a nonmonotonic variation of
shear stress with shear rate, not seen in experiments on well-characterized polymer melts. The
problem arises from the nearly perfect alignment of the tubes along the flow direction. (Notice
that for entangled wormlike surfactant solutions such a perfect alignment is suppressed by the
continual breakup and recombination of the worms [16]). Marrucci solved this problem to a
significant extent by adding a new ingredient in the theory of polymer melt rheology, which
plays a crucial role in the nonlinear range: convective constraint release (CCR). [74] CCR
is the mechanism by which topological constraints are not only affinely displaced, but also
removed by the nonthermal motion between chains. The relative motion can be induced either
directly by a velocity gradient, or indirectly by chain retraction following a ‘fast’ deformation,
i.e., with a rate larger than the reciprocal Rouse time. Open problems still remain, however.
One of them is the incomplete fulfilment of the Cox-Merz rule. [75] This provides another
motivation for performing computer simulations: the results of computer simulations can be
used to test the predictions, and aid in the improvement, of molecular theories of polymer
melt flow.

This chapter is organized as follows: The simulation model is presented in Sec. 7.2. The
results are presented and discussed in Sec. 7.3. This section is divided in three subsections. In
subsection 7.3.1 we will focus on the transient response upon startup of fast steady shear. We
will analyze the characteristic over- and undershoot in stress and the transient chain elonga-
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tion and orientation. Next, in subsection 7.3.2, we will present the steady shear flow results.
We will analyze the development of the nonlinear viscosity and normal stress coefficients
with shear rate and molecular weight. We will also measure the steady state extinction angle
and test the stress-optical rule. In subsection 7.3.3 we will test the Cox-Merz rule against a
mixed Rouse-reptation expression for the linear shear relaxation modulus that was introduced
in Chapter 5. In Sec. 7.4 we will summarize our conclusions.

7.2 Model and simulation method

7.2.1 Coarse-grained interactions and uncrossability

In this study we have used the same coarse-grained molecular dynamics simulation model
of linear polyethylene (PE) as presented in Chapters 4 and 5. In short, each coarse-grained
particle (blob) represents the center of mass of λ = 20 consecutive monomers. Because of
the coarse-graining, alongside the mean forces, friction and random forces emerge in the
equations of motion. It was found that the random forces decorrelate much faster than the
blob momenta, which leads to an equation of motion of the simple Langevin type;

M
d2Ri

dt2 = FS
i −Mξ

dRi

dt
+FR

i , (7.1)

where Ri is the position of blob i, M is its mass, and ξ is the blob friction frequency, related
to the random force FR through the fluctuation-dissipation theorem. FS

i is the systematic
part of the force on blob i, which is derived from the free energy or potential of mean force
associated with the configuration:

FS
i = −∇iχ , (7.2)

χ (Rn) = −kBT lnPn (Rn) . (7.3)

Here Pn is the n-blob distribution function. Both the systematic interaction and the friction
parameters were derived from a microscopic molecular dynamics simulation of PE at a tem-
perature of 450 K and a constant mass density of ρ = 0.761 g/cm3, in a cubic simulation box
with periodic boundary conditions.

As already mentioned in the introduction, since so many monomers are combined into
one blob, the blobs are rather empty and the systematic interactions between blobs are very
soft. Consequently, in the mesoscopic simulations, without additional measures, unphysi-
cal bond crossings may occur. To prevent this from happening, an uncrossability constraint
(TWENTANGLEMENT) is applied. The idea behind this constraint is to consider the bonds
between consecutive blobs to be elastic bands. As soon as two of these elastic bands make
contact, an “entanglement” is created at the crossing position X which prevents the elastic
bands from crossing. This is accomplished by defining the attractive part of the potential
between bonded blobs i and i+1 to be a function of the path length Li,i+1 of the bond, going
from one blob (i) to the next (i+1) via the intermediate entanglement,

Li,i+1 =
∣∣Ri −X

∣∣+ ∣∣X−Ri+1

∣∣ . (7.4)
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R R
X

i i+1
Figure 7.1: Sketch of two “entangled” parts
of chains. At an earlier time, the bonds be-
tween the two depicted pairs of blobs tried
to cross each other. This caused the un-
crossability constraint to insert an “entan-
glement” at the crossing point. Since then
the attractive part of the potential between
bonded blobs is a function of the path length
from blob i, via the entanglement at X, to
blob i+1.

See Fig. 7.1 for a sketch of this situation. The position of the entanglement is determined
by the requirement that there is always equilibrium of forces at the entanglement. Of course
more than one entanglement per bond is allowed. Details about this and more about the
uncrossability constraint can be found in Chapter 4.

7.2.2 Simulating shear flow

In this chapter we study the nonlinear viscoelastic properties of our polymer simulation
model. To this end we apply a planar Couette (shear) flow to our box, the velocity field
being given by

u(r) =
.
γ ryêx, (7.5)

where
.
γ is the shear rate and êx is the unit vector parallel to the x-axis. In a simulation, the

effect of shear flow can be taken into account through the SLLOD algorithm [5,6] which, in a
form modified for the Langevin equation, is:

dRi

dt
=

Pi

M
+

.
γ Riyêx, (7.6)

dPi

dt
= FS

i −
.
γ Piyêx −

(
∑i FS

i ·Pi−
.
γ PixPiy

∑i P2
i

)
Pi −ξPi +FR

i . (7.7)

Here Pi is the peculiar momentum of blob i. The term between brackets serves to keep the
peculiar kinetic energy ∑P2

i /2M exactly constant in case there are no friction or random
forces (ξ = 0). In other words, all fluctuations in the temperature of the system under shear
will be caused by the friction and random forces. This may become important when the
shear rate

.
γ is large compared with the friction frequency ξ or when the systematic forces are

relatively large. This is, however, not the case for our simulations. To explain this, we have
to elucidate the two different possible uses of the Langevin equation.
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The Langevin stochastic dynamics method has been used to perform simulations of poly-
mer chains by several authors among whom are Kremer and Grest. [66] These authors effec-
tively established a coupling between the system and a heat bath in order to keep the system
at some desired temperature. In order not to influence the chain dynamics too much, they had
to choose the friction frequency ξ much smaller than the effective friction due to systematic
interactions between the beads in the model, which determines dynamic properties, such as
diffusion. In our work, however, the systems have been coarse-grained to a much larger level
and the interactions have become very soft. As a consequence, besides acting as a thermostat,
the friction has acquired the meaning of a physical friction. In fact, the friction frequency ξ
is so large that, if a simple leap-frog or velocity-Verlet algorithm [5] would be used, it would
limit the length of the integration step by ∆t � 1/ξ . To overcome this limitation, in our pre-
vious work, we have adopted the Brownian dynamics algorithm of Allen, in which the effects
of the friction and stochastic forces in Eq. (7.1) are “pre-integrated” under the assumption
that the systematic forces may be interpolated linearly during each time step (for ξ → 0 this
results in a second order Verlet algorithm). [4] This way, the integration step is again limited
by the maximum curvature of the systematic interactions. However, such a pre-integration is
not so easy to perform when shear is present, see Eqs. (7.6) - (7.7). Fortunately, there is a
way out. Inserting Eq. (7.6) in Eq. (7.7) one finds

M
d2Ri

dt2 = FS
i −Mξ eff

(
dRi

dt
− .

γ Riyêx

)
+FR

i , (7.8)

ξ eff = ξ +

(
∑i FS

i ·Pi−
.
γ PixPiy

∑i P2
i

)
. (7.9)

In our case, the friction frequency is large (ξ = 8 ps−1) and the systematic forces and shear
rates (maximal 0.003 ps−1) relatively small. Therefore, to a good approximation ξ eff = ξ .
Notice that Eq. (7.8) can be interpreted as follows: the forces which act on a blob under shear
are the systematic forces, the friction forces, where the velocities must be taken relative to the
shear field, and the random forces. The latter two forces have the same characteristics as in
equilibrium. In this work we have used the abovementioned algorithm of Allen, in which we
treat the term FS

i +Mξ
.
γ Riyêx as the systematic force on a blob. We have checked the stability

of this algorithm by measuring the temperature, defined through the peculiar kinetic energy
∑P2

i /2M, where Pi is given by Eq. (7.6). This yielded good results (450 K, as desired).
We conducted the simulations for systems consisting of nchain linear polymers made of N

blobs confined in a sheared box with Lees-Edwards boundary conditions, [5] where N was
taken to be 4, 6, 10, 20, 30, and 40 (these systems will be referred to as B4, B6, etc.), and nchain
was 180, 120, 100, 80, 80, and 80, respectively. These are both unentangled and entangled
systems, since Ne ≈ 6 blobs. The mass density was kept at 0.761 g/cm3. Well-equilibrated
systems from our previous work (Chapter 5) were used as initial states and the shear field was
suddenly switched on at t = 0. This allowed measurement of both transient response upon
onset of shear and steady state. The shear rates were taken to be 30, 100, 300, 1000, and
3000 µs−1, except for N = 40, where the shear rate 30 µs−1 was estimated to be too small
to reach steady state within the production time (about 3 months of computation on an SGI
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Origin 2000 system, one processor for each system). The stress tensor σαβ is calculated by

σαβ = − 1
V

Ntot

∑
i=1

(
MViαViβ +RiαFS

iβ

)
, (7.10)

where V is the volume of the simulation box, Ntot is the total number of blobs, Viα = Piα/M is
the α component of the peculiar velocity of blob i, Riα the α component of Ri, and FS

iβ the β
component of the systematic force on blob i arising from the potential energy. In order to es-
timate the error in the measurement of the stress, in some of the systems independent starting
configurations were generated by continuing equilibrium simulations for a time longer than
the largest relaxation time. After this, the shear field was turned on for a second measurement.

7.3 Results and discussion

We will now present and discuss the results from the nonequilibrium simulations. We will
first focus on the transient response, then on the steady state properties. At the end of this
section, we will test the Cox-Merz rule, which equates the nonlinear steady state viscosity to
the Fourier transform of the zero-shear relaxation modulus.

7.3.1 Transient response upon startup of steady shear

Startup stress

In equilibrium, the average stress tensor is diagonal and the diagonal components are all equal
to each other, σαα =−P, where P is the isotropic pressure. This means that the non-diagonal
components σαβ are zero on average. The first and second normal stress differences, defined
as

N1 = σxx −σyy, (7.11)

N2 = σyy −σzz, (7.12)

are also zero on average. Obviously the situation is different as soon as the system is sheared,
i.e., is brought in a nonequilibrium situation. Fig. 7.2 shows the time dependence of various
components of the stress tensor in the B10 system (equivalent to C200H402) when a shear flow

with constant shear rate
.
γ= 1000 µs−1 is started at time t = 0. Several qualitative observations

can be made. Both the xz- and yz-components of the stress tensor remain zero, as should be
expected for a shear field which is symmetric with respect to the xy-plane. The xy-component
of the stress tensor is clearly not zero and passes through a very weak maximum before
becoming stationary. At the given shear rate, the first normal stress difference is much larger
than σxy and also displays a very weak maximum, but occurring at a later time. The second
normal stress difference is much smaller than the first normal stress difference and its sign is
negative, in agreement with experimental observations. Such normal stress differences give
rise to quite peculiar viscoelastic effects, collectively known as Weissenberg effects. [12]
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Figure 7.2: Time dependence of various
stress components in the B10 system (equiv-
alent to C200H402) in starting up a shear flow
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Figure 7.3: Transient growth of viscosity nor-
malized by the steady state viscosity as a
function of total strain after startup of steady
shear flow in the B20 system, for shear rates
.
γ= 300, 1000, and 3000 µs−1. The dimen-
sionless shear rates (Deborah numbers) are
42, 140, and 420, respectively.

It is generally believed that the overshoots in the stress components occur because the
polymer resists the chain stretch induced by the onset of fast flow, an effect which diminishes
once the chains become oriented towards the flow direction. The Doi-Edwards tube model
predicts that the maximum overshoot in the xy-stress occurs at a total strain γ =

∫ .
γ dt =

.
γ t

value of 2. It is well known that at high shear rates the strain at which the maximum in
the overshoot occurs actually increases with shear rate. [104, 105] This is also predicted, at
least qualitatively, by other reptation-like theories which include the convective constraint
release mechanism. [33, 58, 81] The increase of the overshoot is investigated for the B20
system (equivalent to C400H802) in Fig. 7.3. Here, we plot the transient growth of viscosity
upon onset of shear, η+ (t), against total strain γ for three different shear rates. The transient
viscosity is defined as

η+ (t) =
σxy (t)

.
γ

, (7.13)

where the plus signifies the fact that the shear is suddenly turned on at t = 0. The results in
Fig. 7.3 are all normalized by their respective steady state values. All shear rates correspond
to Deborah numbers

.
γ τd much larger than one. Here, τd is the largest relaxation time of

the chain. At these high shear rates, not only the maximum overshoot increases with shear
rate, but indeed also the strain γmax at which the maximum occurs. In Fig. 7.4 we present the
maximum overshoot and the strain at maximum overshoot against Deborah number (filled tri-
angles). These results are in good agreement with experiments on solutions in tricresyl phos-
phate of nearly monodisperse polystyrene by Hua, Schieber, and Venerus (open circles). [58]
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The degree of entanglement of their sample was approximately Z = Mw/Me = 7, comparable
with ours. It is important to notice that most theories greatly overpredict the magnitude of
the overshoot at these high shear rates. In the theory of Hua et al., an overshoot of 4.6 is
predicted for the above Deborah number of 150 (filled square in the top Fig. 7.4), whereas
experimental observations are closer to 2.6.

Instead of varying the shear rate, we can also vary the chain length. In Fig. 7.5, we
investigate the development of the transient growth of viscosity with chain length. The de-
velopment of the overshoot with increasing chain length is similar to the development of the
overshoot with increasing shear rate: both the maximum overshoot and the strain at which the
maximum occurs increase with chain length. This may have been expected since increasing
the shear rate and increasing the chain length both lead to an increase of the Deborah number.

Next, we turn our attention to the transient first normal stress difference N1. The first
normal stress coefficient is related to N1 by

Ψ+
1 (t) =

N1 (t)
.
γ2 , (7.14)

where again the plus signifies the fact that the shear is suddenly turned on at t = 0. In Fig.
7.6 we plot the transient growth of the first normal stress coefficient Ψ+

1 , normalized by its
steady state value, against total strain γ for the same system and shear rates as in Fig. 7.3.
The overshoot is weaker than in the case of the viscosity, in agreement with experiment. [104]
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At
.
γ= 300 µs−1 (dotted line) only very weak overshoot in Ψ+

1 can be observed, while η+

already has a maximum overshoot of 1.5. Moreover, where overshoot in Ψ+
1 can be observed,

it occurs at roughly twice the strain value compared with the overshoot in η+. Also, the time
required to reach steady state is roughly twice as long for Ψ+

1 . In Fig. 7.7 we investigate the
development of the transient growth of the first normal stress coefficient with chain length for
the same systems and shear rate as in Fig. 7.5. Again, the development of the overshoot with
chain length is similar to the development with shear rate.

Transient elongation and orientation

When a shear flow with constant shear rate is started, the polymer chains deform and orient to-
wards the flow direction. The elongation of the polymer is characterized by the xx-component
of the mean square gyration tensor 〈R〉: [6]

〈R〉 =
1

nchainN

nchain

∑
p=1

N

∑
i=1

(
Rpi −Rpg

)(
Rpi −Rpg

)
. (7.15)

Here Rpi represents the position of the ith blob on the pth chain, and Rpg is the position of
the center of mass of the pth chain. Notice that the trace of R is the mean square radius of gy-
ration. Fig. 7.8 shows the time dependence of the xx-component of the mean square gyration
tensor in the B10 system for all applied shear rates, as well as the yy- and zz-components for

the largest shear rate,
.
γ= 3000 µs−1. Initially all components are equal to one third of the

equilibrium mean square radius of gyration, which is 1/3× 4.05 nm2 (horizontal thin line,
see Chapter 5). Fig. 7.8 indicates that when the shear flow starts, 〈Rxx〉 increases dramatically
for the highest shear rates. At the same time the yy- and zz-component of the mean square
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gyration tensor decrease, the yy-component somewhat more than the zz-component. Such a
large decrease of

〈
Ryy
〉

and 〈Rzz〉 does not occur at the lower shear rates (not shown).
The orientation of the polymers is characterized by the order tensor S:

S =
3
2

(
〈uu〉− 1

3
I
)

, (7.16)

〈uu〉 =
1

nchain (N −1)

nchain

∑
p=1

N

∑
i=2

Rpi −Rp,i−1∣∣∣Rpi −Rp,i−1

∣∣∣
Rpi −Rp,i−1∣∣∣Rpi −Rp,i−1

∣∣∣ , (7.17)

where I is the unit tensor. In an isotropic system, all components of the order tensor equal
zero. In a nonisotropic system, the eigenvector belonging to the largest eigenvalue (the order
parameter) of the order tensor gives the preferential orientation of the bonds. The angle
between this eigenvector and the flow direction (̂ex) is the flow alignment angle χ . It is given
by

tan2χ =
2Sxy

Sxx −Syy
. (7.18)

Because the bonds align with the flow direction, the optical properties of the polymer melt
are also influenced; the refractive index of the material is no longer isotropic, but must be
represented by a tensor, the refractive index tensor. The anisotropies in the refractive index
tensor are caused by anisotropies in the polarizability of the material. Birefringence experi-
ments can be used to measure the flow alignment angle experimentally. The flow alignment
angle is also referred to as the extinction angle.

Fig. 7.9 shows the time dependence of the flow alignment angle in the B20 system for
three different shear rates. The flow alignment angle decreases from approximately 45◦ to
a lower angle, which decreases with increasing shear rate. The 45◦ angle is expected for
systems in the linear regime. For example, for a Rouse chain undergoing a small xy-strain,
the chain is preferentially oriented along the line x = y. Notice the undershoot in the predicted
flow alignment angle at the highest shear rates, in agreement with experimental observations
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[58, 81, 91] and theoretical predictions. [33, 58, 81] In the beforementioned experiments of
Hua et al. [58] on solutions of polystyrene, with a Deborah number of 150, the undershoot
occurred at a strain of approximately 16, in agreement with our results (dashed curve in Fig.
7.9). In Fig. 7.10 the influence of the molecular weight on the transient flow alignment angle
is investigated. The results are plotted against total strain for different chain lengths, while
the shear rate is kept constant at 1000 µs−1. For N ≥ 10 undershoots are present, though
perhaps not always clearly visible.

7.3.2 Steady shear flow

Some time after startup of the shear flow, a steady state is reached. In this subsection we will
study the steady state viscometric and optical properties.

Viscometric properties

Experiments [8] on highly entangled chains show that, over a wide range of shear rates
.
γ

above the inverse disentanglement time 1/τd , the steady shear stress σxy is nearly constant.
The first normal stress difference N1 increases more rapidly with shear rate than does the

shear stress over the same range of shear rates. Moreover, the slopes of σxy and N1 vs.
.
γ

increase with decreasing molecular weight. In our simulations the longest chains are not
so highly entangled, so we do not expect to observe the nearly constant stress. However,
the more rapid increase of the first normal stress difference may be observed, as well as the
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and B20 systems (equivalent to C80H162 to
C400H802). The thin horizontal line is the es-
timate of the (linear) plateau modulus from
equilibrium simulations, Chapter 5.
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Figure 7.12: Steady state shear viscosity η as
a function of shear rate

.
γ for different chain

lengths. The error bars for the B10 data origi-
nate from the standard deviations in the av-
erage xy stress component, and are typical
for viscosity measurements in the other sys-
tems. The dashed curves are guides to the
eye. Arrows under the curves indicate the in-
verse longest relaxation times of the B4, B6,
and B10 systems. Horizontal arrows at the
left scale indicate the zero-shear viscosities,
obtained in equilibrium simulations (Chapter
5) of the same systems.

increase of the slopes with decreasing molecular weight. Fig. 7.11 shows the steady shear
stress and first normal stress difference versus shear rate

.
γ . Clearly, the slopes are decreasing

with increasing chain length and the slope of N1 vs.
.
γ is always larger than that of σxy. In the

B20 system, steady state was not yet fully reached for
.
γ≤ 100 µs−1, making it impossible to

make a reliable estimate of the steady state stress. The same applies for
.
γ≤ 300 in the B30

system and
.
γ≤ 1000 in the B40 system.

The shear-rate dependent viscosity η is determined from the steady state shear stress:

η = lim
t→∞

σxy
.
γ

. (7.19)

The limit t → ∞ must not be taken literaly; it just signifies the fact that all transient effects
must be ignored. In Fig. 7.12 the shear viscosity is plotted versus shear rate. At low shear
rates, the viscosity should approach a constant value, the zero-shear viscosity. The arrows
at the left scale indicate the zero-shear viscosities of B4, B6, and B10 from our previous
equilibrium simulations in Chapter 5.1 The arrows under the curves indicate the inverse

1 The small amount that was added in Chapter 5 to account for the difference between initial shear relaxation of
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Figure 7.13: Steady state first normal stress
difference Ψ1 (top figure) and second nor-
mal stress difference Ψ2 (lower figure) as a

function of shear rate
.
γ for different chain

lengths. The error bars for the B10 data orig-
inate from the standard deviations in the av-
erage relevant stress components, and are
typical for normal stress measurements in
the other systems.
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longest relaxation times 1/τd , also from our previous equilibrium simulations. Only for B4,
and almost for B6, the linear regime is reached. For both chain lengths, the linear plateau is
in good agreement with the zero-shear viscosity from the previous equilibrium simulations.
Notice that the transition to the linear plateau is determined by the inverse longest relaxation
time, but that this transition is not very sharp; the viscosity keeps increasing for

.
γ< 1/τd .

The same holds for the curve for the B10 system, although the way of plotting is slightly
misleading. In fact, the curve was made with the viscosity at zero shear constrained to the
equilibrium simulation value and the point of maximum inflection at 1/τd .

At higher shear rates, shear thinning is observed. The viscosities of the samples of length
N = 10 and larger all approach a common curve independent of molecular weight. In the plot
the data for N = 20 and larger are hardly discernible. This is in agreement with experimental
observations [132] and other simulation work. [6, 68, 69] The slope of the curve is approx-
imately -0.6, in agreement with observations in simulation work by Kröger and Hess. [68]
Experimentally, the slope is closer to -0.85, [132] but this is for highly entangled chains. We
expect that, as molecular weight increases, the slope of σxy in Fig. 7.11 becomes smaller, and
the slope of the viscosity curve comes closer to the experimental value.

The first normal stress coefficient Ψ1 and the second normal stress coefficient Ψ2 are
determined from the steady state first and second normal stress differences:

Ψ1 = lim
t→∞

N1
.
γ2 , (7.20)

Ψ2 = lim
t→∞

N2
.
γ2 . (7.21)

In Fig. 7.13 the first and second normal stress coefficients are plotted against shear rate. A
linear plateau can be recognized in the Ψ1 data of B4 at small shear rates. All larger chain
lengths are in the nonlinear regime for all shear rates studied. The first normal stress coeffi-
cients of the samples of length N = 20 and higher all approach a common curve independent

atomistically detailed and coarse-grained systems is now omitted.
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of molecular weight. This is also observed in other simulation work. [6] The slope of the
curve is approximately -1.1. The data for the second normal stress coefficient is less com-
plete because the relative noise in N2 increases rapidly as the strain rate decreases. At the
highest shear rates accurate measurements of Ψ2 were still possible. In this region the slope
of the curves is approximately -1.5.

In the development of the theory of polymers in shear flow, much interest goes to the
normal stress ratio, −Ψ2/Ψ1. Which value this ratio should approach for small shear rates,
is still a matter of debate. [75] Different theories predict different ratios, ranging from 1/7
to 2/7. Unfortunately, because of the large noise in the N2 measurements at low shear rates,
these simulations can not give a definite answer either. However, we can estimate the ratios
at higher shear rates, in the nonlinear regime. For the B10 system, the normal stress ratio

decreases from 0.12± 0.04 for
.
γ= 100 µs−1 to 0.046± 0.006 for

.
γ= 3000 µs−1. Similar

values in the nonlinear regime have been observed in experiments [93] and in the simulation
work of Aoyagi and Doi. [6]

Steady state extinction angle

In subsection 7.3.1 we have seen that the flow alignment angle or extinction angle χ decreases
from 45◦ to a lower value, which decreases with increasing shear rate. For long chains and
high shear rates an undershoot in χ was predicted. After some time, however, the extinction
angle remains constant. According to the Doi-Edwards theory, the steady state extinction
angle falls to zero very fast for Deborah numbers larger than one, i.e., the chains become
almost perfectly aligned with the flow field when the shear rate becomes much larger than
the inverse disentanglement time. Exactly this is the reason, why the Doi-Edwards theory
predicts excessive shear thinning of the viscosity at high shear rates. Experimentally, [58,
80] the steady state extinction angle decreases more gradually with shear rate. As already
mentioned in the Introduction, the idea of convective constraint release serves to explain
this observation. When the flow is fast compared with the inverse disentanglement time,
constraints surrounding a given chain are quickly swept away, leaving the chain much more
free to relax than is possible in pure reptation. [81]

Although, the steady state extinction angle strictly is a function of both the shear rate and
the chain length, the dominant factor is the Deborah number. In Fig. 7.14 we show a plot
of the steady state extinction angle (or flow alignment angle) χ of our simulation model as
a function of the Deborah number

.
γ τd . Indeed, the results fall more or less on one curve.

Also plotted are the results of experiments on nearly monodisperse entangled polystyrene
solutions by Hua, Schieber, and Venerus. [58] We find a very good agreement between our
simulation results and experiment. Note that for B30 and B40, at the highest shear rate of
.
γ= 3000 µs−1, the average chain size is larger than the size of the cubic box. Finite box-size
effects limit the minimum flow alignment angle to about 5 degrees.
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Figure 7.14: Steady state extinction angle χ
as a function of Deborah number

.
γ τd for

different chain lengths. The open circles are
experimental results by Hua, Schieber, and
Venerus [58] of a solution in tricresyl phos-
phate of nearly monodisperse polystyrene.
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Experiment

The stress-optical rule

Considering a system of temporary entanglements connected by entropic springs, the stress
tensor σσσ is proportional to the order tensor S:

σ̄σσ = CS. (7.22)

σ̄σσ is the traceless part of the stress tensor, since in general the relationship between the traces
of σσσ and S is not as simple as stated above. Since the order parameter is directly related to
the refrective index tensor, this is equivalent to the stress-optical rule.

In a simulation, the stress-optical rule can be tested because both the stress and the order
tensor can be measured independently. In Fig. 7.15 we plot the stress-order ratio against
the shear rate for three components: σxy/Sxy, N1/(Sxx −Syy), and N2/(Syy −Szz). From the
Figure it is clear that for the first two of these components, the ratio becomes constant for
low shear rates. Moreover, the constant of proportionality is the same, C ≈ 28 MPa, for these
components. Thus, we find that the stress-optical rule is valid for small shear rates. For higher
shear rates, the ratios increase and the stress-optical rule is violated, as was already verified in
the simulations of Kröger et al. [69] The ratio N2/(Syy −Szz) seems to be always lower than
that of the other components. However, this ratio can not be evaluated for the lowest shear
rates, so no conclusion can be drawn for the validity of the stress-optical rule for the second
normal stress difference.

In experimental work, the stress-optical rule is usually employed to derive the flow align-
ment (or extinction) angle from stress measurements:

tan2χstress =
2σxy

N1
, (7.23)

where we have added the superscript “stress” to distinguish it from the directly measured
flow alignment angle χ , Eq. (7.18). In Fig. 7.16 we have plotted the stress based flow
alignment angle versus the “real” flow alignment angle. We find that the agreement is very
good, even though we have seen that the stress-optical rule is not strictly valid for high shear
rates (Deborah numbers of up to order 1000 occur). The reason for this can be found in Fig.

133



7. POLYMER MELTS IN TRANSIENT AND STEADY SHEAR FLOW

10
1

10
2

10
3

B4

B6

B10

B20

B30

B40

 10
1

 10
2

 10
3

st
re

ss
 / 

or
de

r 
[M

P
a]

10
1

10
2

10
3

10
4

shear rate γ [µs
−1

]

10
1

10
2

10
3

σxy/Sxy

N1/(Sxx−Syy)

N2/(Syy−Szz)

Figure 7.15: Test of the stress-optical rule.
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vided by corresponding components of the
order tensor are plotted against shear rate

.
γ

for different chain lengths. The components
are: xy (top figure), xx− yy (middle figure),
and yy− zz (lowest figure). Dashed lines in-
dicate a constant of proportionality of C = 28
MPa.
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Figure 7.16: Steady state extinction an-
gle estimated from stress tensor compo-
nents, χstress = 1/2tan−1

(
2σxy/N1

)
, ver-

sus the “real” steady state extinction angle,
χ = 1/2tan−1 (2Sxy/(Sxx −Syy)) for differ-
ent chain lengths.
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Figure 7.17: Steady state shear viscosity η
versus shear rate

.
γ (symbols), and complex

viscosity η∗ versus frequency ω (dashed
lines) for different chain lengths. The com-
plex viscosity is obtained by Fourier trans-
forming the mixed Rouse-reptation expres-
sion for the linear shear relaxation modulus
G(t), Eq. (5.24).
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7.15, where we see that the ratio σxy/Sxy increases approximately just as fast with shear rate
as the ratio N1/(Sxx −Syy). Therefore the equality of χ and χstress is valid over a much larger
range of shear rates than the stress-optical rule. The disagreement between χ and χstress is
largest for the smallest chain lengths, N = 4 and 6. This could have been expected, since the
approximation of the polymer as a collection of entropic springs (on which the proportionality
between stress and order is based) is only valid for very long chains. The downturn at χ ≈ 5
degrees is caused by the finite box-size effects, as explained before.

7.3.3 The Cox-Merz rule

It is an experimental fact that the observed behavior in concentrated polymer solutions and
polymer melts is in very good agreement with the empirical Cox-Merz rule. [12,20,59,74,75]
This (rather mysterious) rule states that there is a relation between the nonlinear steady state
shear viscosity and the complex viscosity obtained in the linear regime:

η
( .
γ
)

= |η∗ (ω)|
ω=

.
γ , (7.24)

where

η∗ (ω) =
G∗ (ω)

iω
=
∫ ∞

0
e−iωtG(t)dt. (7.25)

G∗ is called the complex modulus and is essentially the Fourier transform of the linear shear
relaxation modulus G(t). In Chapter 5 we have shown that G(t), to a good approximation,
can be viewed as a sum of Rouse-type relaxations for mode numbers k larger than N/Ne and
reptation-type relaxations for the lower mode numbers [Eq. (5.24] at times larger than the
entanglement time τe. We will now test whether this expression is in agreement with the
Cox-Merz rule. In Fig. 7.17 we plot both the steady state shear viscosities (symbols) and the
magnitude of the Fourier transform of the mixed Rouse-reptation G(t) (dashed lines) against
shear rate and frequency, respectively. The wiggles in the dashed curves are a consquence of
the strict separation between Rouse-type and reptation-type relaxation of the lowest modes
for times t < τe and t > τe. Nevertheless, the agreement is very satisfactory for all shear
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rates lower than
.
γ= 3000 µs−1. A deviation at very high shear rates is in agreement with

other observations in which the Cox-Merz rule was found to underpredict the viscosity. See,
for example, Ref. [12]. At shear rates much higher than 3000 µs−1, the predictions of the
coarse-grained model will become unrealistic anyway, because the fastest relaxation time of
the model is τCG

0 ≈ 0.09 ns, as we have seen in Chapter 5. Much faster relaxations can occur
in real polyethylene melts, down to the picosecond time scale.

7.4 Conclusions

We have used a coarse-grained simulation model, developed in the previous chapters, to
investigate the transient and steady state nonlinear flow properties of unentangled and mod-
erately entangled polyethylene melts. We found that the model’s predictions agrees very well
with various kinds of rheological experiments for shearing flow:

1. The simulation model predicts transient overshoot for both the shear stress and the
normal stress difference at high shear rates. The locations of the maxima and the
magnitudes of the the overshoots are in good agreement with experiment.

2. The simulation model predicts an undershoot of the extinction angle during startup of
steady shear flow at high shear rates. The strain at which the undershoot occurs is in
good agreement with experiment.

3. The slopes of the steady state shear stress and normal stress difference versus shear
rate increase with decreasing molecular weight. The viscosities and normal stress co-
efficients all approach common curves independent of molecular weight at high shear
rates. These findings are also in agreement with experiment.

4. Because of convective constraint release, the steady state extinction angle decreases
more gradually with shear rate than predicted by the Doi and Edwards model. The
actual decrease is in very good agreement with experiment.

We have been able to test the stress-optical rule and found that it is valid, but only for
low and moderate shear rates. Interestingly, the extinction angle, as calculated from stress
components, remains equal to the “real” (optical) extinction angle even for very high shear
rates, where the stress-optical rule no longer strictly applies. Apparently, the ratio of shear
stress and first normal stress difference remains equal to the corresponding ratio in the order
tensor, even at very high shear rates.

Finally, the Cox-Merz rule was tested for our coarse-grained model. We found that the
nonlinear viscosity can well be predicted by using this rule, but not at the highest shear rates.
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Summary

In this thesis we report on computer simulations of polymer melts. Polymers in a melt can be
viewed as long molecules which coil around each other and hinder each other’s motions: they
are “entangled”. Entanglements occur because bonds between two adjacent atoms in a poly-
mer chain can never be crossed by other such bonds. The goal of our study was to simulate
and to understand the dynamical and rheological behavior resulting from this entanglement
effect. Because of its relative simplicity, we have chosen polyethylene (PE) as our primary
system of interest.

In Chapter 3 we report on molecular dynamics (MD) simulations of a melt of relatively
short C120H242 chains. Using the atomistic MD force fields, the uncrossability of bonds is
automatically guaranteed because of the extremely high energy barier that has to be over-
come if two bonds want to cross. Unfortunately, MD simulations are computationally very
demanding. The rapid internal motions of the molecules make it necessary to calculate the
interactions at femtosecond (10−15 s) intervals. As a consequence, simulations of even the
relatively small system of C120 chains took a few months to complete. From these simulations
we learned that various dynamic quantities, as measured in the C120 system, can consistently
be described by the Rouse model (see Chapter 2) using a single set of fit parameters, provided
the length scales involved are larger than the statistical segment length.

The longest characteristic time scale that occurs in a system of C120 chains is about 6
nanoseconds, which is well within reach of atomistic MD simulations. However, the longest
time scale increases rapidly with chain length, and already equals several microseconds for
a C1000 chain. Moreover, the system size must increase as well to avoid significant overlap
of a chain with itself via the periodic boundary conditions. Hence, fully atomistic simulation
of the dynamics and rheology of long polymer chains is quite impossible with current-day
computer power. In order to increase the time and length scales accessible in simulations,
it is necessary to describe the polymers on a more coarse-grained level. If the degree of
coarse-graining is larger, a particular chain is represented by less coarse particles (called
“blobs”) and the integration time step can be increased. However, as long as the coarse-
grained interactions are modelled as spherical interactions, it is important that the size of
a blob does not exceed the entanglement length, since otherwise no realistic entanglement
effects can arise. Taking these considerations into account, we decided to represent the center
of mass of 20 consecutive CH2 groups by one blob.

In Chapter 4 we derived the coarse-grained interactions between these blobs from the
underlying atomistic model. The resulting interactions are so soft that the uncrossability of
bonds is no longer automatically met. To prevent such unphysical bond crossings a new un-
crossability constraint, the TWENTANGLEMENT algorithm, was introduced, details of which
are also given in Chapter 4. The idea behind this constraint is to consider the bonds be-
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tween consecutive blobs to be elastic bands. As soon as two of these elastic bands make
contact, an “entanglement” is created at the crossing point which prevents the elastic bands
from crossing.

The advantage of coarse-graining bottom-up, from the atomistic to the mesoscopic scale,
is that all time and length scales are incorporated automatically and in their right proportions.
Indeed, in Chapter 4 we found very good agreement between the dynamic results of the
atomistic MD simulations of C120 and the coarse-grained simulations of B6. We observed
a subdiffusive exponent in the mean square displacement of the chains, a stretching of the
exponential decay of the Rouse modes, and a slowing down of the relaxation of the single
chain coherent dynamic structure factor. Both the uncrossability of chains and their stiffness
at smaller scales were found to be essential for these effects to occur. Interestingly, the shear
relaxation modulus initially behaves Rouse-like, but after t = 5 nanoseconds, the stress in the
system relaxes more slowly than in a system of Rouse chains. This was attributed to a very
slow interchain stress relaxation caused by the uncrossability of chains.

In Chapter 5 we studied the dynamical and rheological behavior of melts of chains rang-
ing from C80 to C1000 (4 to 50 blobs). We found that the dynamics of chain lengths C400 -
C1000 is in approximate agreement with reptation theory for large time scales, but that the
approximation of a Rouse-like primitive path moving with great freedom in a tube is too
strict. A better picture would be that of a primitive path that is interacting with the neigh-
bouring chains on every length scale up to the entanglement length Ne. This is especially
clear in Fig. 5.7, where the degree of non-exponentiality of the relaxation of internal modes
is largest for scales below the entanglement length Ne. In fact we identified a new length
scale, called the slowing down length Ns, which is smaller than the entanglement length Ne.
The effective segmental friction increases rapidly around Ns, leading, at constant density, to
a transition in the scaling of the diffusion coefficient from D ∼ N−1 to D ∼ N−2 and a con-
spicious non-exponential relaxation behavior. These effects were attributed to strong local
kinetic constraints caused by both chain stiffness and interchain interactions. The onset of
non-local (entanglement) effects occurs at a chain length of C120, as exemplified by devia-
tions from Rouse behavior of the shear relaxation modulus. Full (rheological) entanglement
effects were observed only above C400, where the shear relaxation modulus displays a plateau
and the single chain coherent dynamic structure factor agrees with the reptation model. The
results for the tube diameter and the plateau modulus, as well as diffusion coefficients and
viscosities were found to be in good agreement with experiment.

In Chapter 6 we derived the entanglement length from a combination of the diffusion
coefficient D and the zero-shear viscosity η0, depite the fact that these transport properties
individually do not display a transition in their scaling exponents at the entanglement length.
The result is consistent with estimates from time-resolved measurements in Chapter 5, but
not consistent with empirical estimates from the value of the plateau modulus G0

N .
Finally in Chapter 7, as an application of our coarse-grained model, we studied the non-

linear flow properties of polyethylene melts by subjecting the model to a planar Couette flow.
In steady state, typical effects such as shear thinning of the viscosity and a decrease of the
extinction angle with shear rate were measured. Also transient effects, such as the charac-
teristic overshoot in the shear stress and an undershoot in the transient extinction angle upon
onset of shear flow, were measured and found to be in good agreement with experiments.
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Outlook

In polymer melts, and in most other complex systems, relaxations of configurations and stress
occur on a very broad range of time and length scales. If our goal is to understand these re-
laxations from a microscopic point of view, computer simulations now and in the future can
provide valuable information to both validate certain ideas (theories) and to improve them.
However, as we have seen above, microscopic simulations of complex systems are usually
limited by the availability of computing power. Since science will always push at the frontiers
of what is possible, we expect that the technique of coarse-graining microscopic interactions
to a mesoscopic scale will play an increasingly important role in both academic and industrial
research. However, before the coarse-graining technique can be applied as routinely as the
atomistic MD simulation technique nowadays, some difficulties will have to be overcome.
For example, no systematic coarse-graining method exists up to this day. The optimization of
the parameters occurring in a coarse-grained model may be performed with different target
functions in mind. One may aim to describe as good as possible the static structure of the
system, or some thermodynamic function, or even some dynamic function. Unfortunately,
we have to deal here with the law of conservation of misery: improving the agreement with
one target function usually implies deteriorating the agreement with other quantities. In other
words, it is impossible to get everything right. The situation may be improved by including
interactions beyond the level of pairwise additive and angular interactions, but this has not
yet been studied systematically. An additional complication is that the coarse-grained inter-
actions generally are state-point dependent, i.e., the interactions can not be assumed to be
transferable to a different temperature, density, or composition of the system. [86]

In the work described in this thesis, the coarse-grained interactions were based on radial
and angular distribution functions at a specified density and temperature (structural crite-
rion), and the friction was determined from the autocorrelation of the constraint force needed
to keep a blob at a fixed position (dynamic criterion). The resulting pressure (a thermody-
namic quantity) was much lower than in the corresponding microscopic system. However,
the focus of this thesis was not on the thermodynamics of polymer melts, but on the dynam-
ics and rheology. We generally found very good agreement with dynamical and rheological
experimental results. Apparently, and this is an advantage, the dynamics and rheology of
polymer melts are not very sensitive to the details of the interactions. This does not imply
that the magnitudes of the interactions do not matter. Rather, the precise form does not matter
as long as the attractions and repulsions between bonded blobs are of the right magnitudes
and as long as all other interactions (angular, non-bonded) are accounted for in the right rela-
tive proportions. We therefore expect that the dynamical and rheological properties of many
more polymer systems can be calculated by a coarse-graining method similar to the one per-
formed in this work. Usually the degree of coarse-graining will be high, in which case the
uncrossability of bonds must explicitly be included in the equations of motion, as was done
in this thesis.
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Samenvatting in begrijpelijk
Nederlands

In dit proefschrift beschrijven we computersimulaties van polymeervloeistoffen. Polymeren
zijn zeer lange moleculen, bestaande uit zeer vele, maar identieke, repeterende eenheden.
Elke repeterende eenheid, een monomeer, bestaat uit enkele atomen, meestal koolstof- en
waterstofatomen, maar soms ook andere. U kunt zich zo’n monomeer voorstellen als een
soort kraal en het polymeer als een kralensnoer. Stelt u zich nu eens voor dat u met uw vinger
door een bak met losse kralen roert. Dit gaat redelijk gemakkelijk. Vervolgens probeert u
met uw vinger door een bak met kralensnoeren te roeren. Ondanks het feit dat we precies
dezelfde kralen gebruiken, gaat dit veel moeilijker. De reden is natuurlijk dat de kralensno-
eren achter elkaar blijven haken; als we een kralensnoer willen bewegen sleurt hij meteen vele
andere kralensnoeren met zich mee. Misschien kunt u zich zelfs voorstellen dat hoe langer de
kralensnoeren zijn, deste moeilijker het roeren zal gaan. Dat is precies de reden waarom een
vloeistof van lange polymeren veel stroperiger (meer visceus) is dan een vloeistof van korte
polymeren.

Nu hebben deze polymeervloeistoffen nog een bijzondere eigenschap: als de polymeren
lang genoeg zijn vertonen ze tijdelijk elastisch gedrag. Dat wil zeggen, als u een druppel
polymeervloeistof snel probeert te vervormen, heeft hij de neiging zijn oorspronkelijke vorm
weer aan te nemen, net als een rubber balletje. Aan de andere kant, als u de druppel langzaam
vervormt, keert hij niet meer terug naar zijn oorspronkelijke vorm. Samenvattend: poly-
meervloeistoffen zijn zowel visceus als elastisch, afhankelijk van de snelheid waarmee u de
vloeistof vervormt. Daarom worden ze ook wel viscoelastische vloeistoffen genoemd. Uit
puur wetenschappelijk oogpunt is het heel interessant om deze eigenschappen te proberen
te begrijpen. Er zijn echter ook praktische redenen. Polymeren worden veel gebruikt in
onze maatschappij – denk aan plastic verpakkingsmateriaal, isolatiemateriaal, onderdelen in
electronische apparatuur, toepassingen in de medische wereld, etc. Voor de verwerking van
polymeren is het heel belangrijk dat we precies begrijpen waarom ze deze materiaaleigen-
schappen hebben, en ook hoe die eigenschappen precies afhangen van de samenstelling van
het monomeer en de lengte van het polymeer.

In dit proefschrift proberen we de materiaaleigenschappen te begrijpen door te kijken
naar de beweging, oftewel dynamica, van de polymeren. Tegenwoordig is het mogelijk
om de dynamica van atomen en moleculen heel gedetailleerd na te bootsen op een com-
puter. Het voordeel van zo’n computersimulatie is dat de polymeerbewegingen heel precies
bekeken kunnen worden, vaak nog beter dan met de meeste experimenten mogelijk is. Ook
is het mogelijk met behulp van computersimulaties theorieën over de dynamica van poly-
meermoleculen te toetsen en, als het nodig is, aan te passen met nieuw verkregen inzichten.
Een nadeel van een dergelijk gedetailleerde computersimulatie is dat hij ontzettend veel tijd
kan kosten. Dit komt omdat atomen in verhouding tot hun eigen afmetingen ontzettend snel
bewegen maar in een vloeistof ook heel vaak met elkaar botsen, waardoor ze heel vaak van
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richting veranderen. Als men de dynamica van de atomen natuurgetrouw wil simuleren, zal
men daarom heel kleine tijdstapjes moeten maken: elk tijdstapje mag niet veel langer duren
dan een femtoseconde, dat is een miljoenste deel van een miljardste deel van een seconde!
In hoofdstuk drie hebben we deze methode gebruikt om de dynamica van een vloeistof van
C120H242 ketens te onderzoeken. We hebben deze berekeningen enkele maanden lang uit-
gevoerd op een van de snelste computers van deze tijd. Desondanks was de totale tijdsduur
waarover we de ketens op deze wijze hebben kunnen volgen maar 50 nanoseconde, dat is
0.000000050 seconde. Gelukkig was het mogelijk om bijna alles over de dynamica te weten
te komen in die ogenschijnlijk korte tijd, omdat de onderzochte C120 ketens relatief kort zijn
en zich snel aanpassen aan nieuwe omstandigheden.

Wanneer men langere ketens wil volgen in de tijd wordt het veel moeilijker. Ten eerste
zijn er dan veel meer ketens nodig om een goede representatie van een vloeistof te krijgen.
Hierdoor duurt het uitrekenen van elk tijdstapje veel langer. Ten tweede passen lange ketens
zich veel langzamer aan aan nieuwe omstandigheden. Bestudering van de dynamica van
dergelijke lange polymeren met bovengenoemde gedetailleerde simulaties zou daarom vele
tientallen jaren in beslag nemen. Zo lang willen we niet wachten en dat is gelukkig ook
niet nodig. Het blijkt namelijk dat de dynamica en materiaaleigenschappen ook heel goed
te beschrijven zijn met een minder gedetailleerd model. In hoofdstuk vier leggen we uit hoe
groepen van wel twintig aaneengesloten monomeren vervangen kunnen worden door slechts
één zachte bal (we noemen het een ‘blob’). Omdat er veel minder van dergelijke blobs nodig
zijn, én omdat we veel grotere tijdstappen kunnen maken – de blobs bewegen veel trager
dan individuele atomen – kan de klus toch in redelijke tijd geklaard worden. We hebben
hiervoor wel een probleem moeten overwinnen: de blobs zijn zo ontzettend zacht dat de
polymeren zonder moeite dwars door elkaar kunnen vliegen. Echte polymeren, bestaande
uit echte atomen, kunnen natuurlijk niet dwars door elkaar vliegen. Het feit dat ze achter
elkaar blijven haken geeft ze juist de bijzondere materiaaleigenschappen – denk maar aan de
bak gevuld met kralensnoeren. Daarom hebben we een rekenmethode ontwikkeld die ervoor
zorgt dat in een simulatie met zachte blobs, de ketens toch niet door elkaar vliegen.

In hoofstukken vijf en zes onderzoeken we de dynamica van lange ketens. We vinden
dat de viscositeit van de vloeistof en de beweeglijkheid van de ketens, dankzij de nieuwe
rekenmethode, goed overeenkomen met experimentele gegevens. We vinden ook dat een
bekende theorie voor polymeerdynamica, de zogenaamde reptatie theorie, redelijk goed op
gaat als niet al te precies naar de details van de beweging gekeken wordt. Echter, als wel
iets preciezer gekeken wordt, komen allerlei afwijkingen naar voren die vooral veroorzaakt
worden door het feit dat de ketens op kleine schaal enigszins stijf zijn en ook op die kleine
schaal al met elkaar interacteren. Dit wordt door de reptatie theorie genegeerd. Dit heeft
gevolgen voor korte en middellange polymeren, maar wordt minder belangrijk voor extreem
lange polymeren.

Tenslotte bekijken we in hoofdstuk zeven het gedrag van onze polymeervloeistoffen wan-
neer ze in een hele snele stroming gebracht worden. Ook nu vinden we goede overeenstem-
ming met experimentele resultaten. In de simulaties beschikken we echter over meer gede-
tailleerde informatie dan in experimenten waardoor we opnieuw de mogelijkheid hebben om
allerlei theorieën, en ook vuistregels, te testen.
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En dan nu het meest gelezen deel van elk proefschrift: het dankwoord. Voor mij persoonlijk
is dit zo ongeveer het moeilijkste deel van het proefschrift. Ik weet namelijk hoe slecht mijn
geheugen is, waardoor ik waarschijnlijk veel mensen zal vergeten te bedanken voor hun steun,
inzet, of gewoon voor de gezelligheid gedurende de afgelopen vier jaren. Deze mensen bied
ik bij voorbaat mijn excuses aan. Ter compensatie zal ik ze vereren met mijn allereerste dank:
dank jullie wel!

Degene die in wetenschappelijk opzicht ongetwijfeld mijn grootste dank verdient is Wim
Briels. Wim, ik had me geen betere promotor en begeleider voor kunnen stellen dan jij. Ik heb
veel van je geleerd en waardeer de ruime mate waarin je me hebt vrij gelaten in de uitvoering
van het onderzoek. Op momenten dat het onderzoek vast dreigde te lopen kwam je altijd met
stimulerende ideeën en wist mij weer te enthousiasmeren voor een stevige rekenpartij. Jouw
aandeel in de resultaten van dit onderzoek is onmiskenbaar.

Ook de andere (oud-)leden van de groepen Computational Chemistry en Computational
Dispersion Rheology wil ik bedanken. Mijn speciale dank gaat uit naar Wouter den Otter,
mijn kamergenoot gedurende de laatste twee jaren van mijn AIO-schap. Ik heb genoten van
de vele malen dat we wis- of natuurkundige probleempjes aan elkaar hebben voorgelegd.
Probleempjes die vaak weinig of niets te maken hadden met ons onderzoek, maar toch onze
aandacht dagenlang konden vasthouden. Ook bedank ik Harald Tepper en Reinier Akker-
mans voor de prikkelende discussies, en vooral voor alles wat zich na het werk afspeelde.
Ik herinner me met name de zwoele avonden in Granada en de koele sneeuwwandelingen in
Han-sur-Lesse. Verder bedank ik Martin van der Hoef, Dick Feil, Bob Hoomans, en Albert
van den Noort voor de vele discussies, met name rond de koffietafel. I would like to thank
Tanya Tolpekina, Sergey Shkulipa, Wladimir Shchettinin and Yuguo Tao for making my stay
at the CDR group a pleasant one and for offering me an insight in Ukrainean and Chinese
culture and language.

Van de studenten wil ik met name Léon van Heijkamp and Peter Kindt bedanken, die ik
heb mogen begeleiden bij hun afstudeeropdrachten. Ik hebt de samenwerking altijd als zeer
prettig ervaren en ik hoop dat jullie er hetzelfde over denken.

Natuurlijk is er meer in het leven dat wetenschap alleen. Ik wil Michel, Bertil, Geert,
Marten, Marco, Henri, Sandra en de rest van de ‘Monolith- en Global-clan’ bedanken voor
de broodnodige afleiding in de vorm van film-, concert- en vooral feestbezoeken. Ook Marko
& Marko wil ik bedanken voor de gezellige avondjes uit.

Op deze plaats wil ik ook mijn ouders bedanken die mij altijd hebben gesteund en elke
keuze hebben gerespecteerd die ik heb gemaakt in het leven. Ik denk dat jullie invloed op
mijn ontwikkeling tot wetenschapper groter is geweest dan jullie zelf vermoeden. Ook mijn
broertje Alexander en zusje Marjolijn wil ik bedanken voor het altijd warme welkom dat ik
voel als ik weer eens in Steenwijk kom.

Mijn grootste dank gaat uit naar Astrid. Astrid, jouw liefde, steun en begrip zijn de laatste
jaren erg belangrijk voor mij geweest. Ook na zware dagen op het werk ging ik altijd met
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plezier weer naar huis in het vooruitzicht jou weer te zien. Ik hoop dat we nog lang van elkaar
kunnen genieten.

Johan Padding Enschede, december 2002
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